

Outline

- DC1 purposes and scope
- DC1 preparation
- LAT data analysis needs
 - Background rejection and OnBoardFilter
 - Gamma-ray Analysis
- DC1 data
- Science Tools for DC1
 - Architecture
 - Distribution
 - Documentation
- DC1 "community"
 - The Wiki page
 - DC1 mailing list
- What's next?
 - Analysis of DC1 data

- "End-to-end" testing of analysis software.
- Familiarize team with data content, formats, tools and realistic details of analysis issues (both instrumental and astrophysical).
- If needed, develop additional methods for analyzing LAT data, encouraging alternatives that fit within the existing framework.
- Provide feedback to the SAS group on what works and what is missing from the data formats and tools.
- Uncover systematic effects in reconstruction and analysis.

Support readiness by launch time to do all first-year science.

Lessons from Data Challenge 1

- "End-to-end" testing of analysis software.
 - First usage of "key tools" (Likelihood, GRB tools)
- Familiarize team with data content, formats, tools and realistic details of analysis issues (both instrumental and astrophysical).
 - FITS, FTOOLS stuff, Exposure, TS maps, Binning, Spectral Analysis, Count rate triggers ...
 - Background rejection and StdCut events
 - Galactic Plane Modeling
- If needed, develop additional methods for analyzing LAT data, encouraging alternatives that fit within the existing framework.
 - Tools development
- Provide feedback to the SAS group on what works and what is missing from the data formats and tools.
 - User feedback
- Uncover systematic effects in reconstruction and analysis.
 - DC1 preparation

First attempt to do LAT science for many users

Data Challenge Planning Approach S.Ritz

- Walk before running: design a progression of studies.
- DC1. Modest goals. Contains most essential features of a data challenge.
 - 1 simulated day all-sky survey simulation
 - find GRB
 - a few physics surprises
 - exercise:
 - exposure, orbit/attitude handling, data processing pipeline components, analysis tools
- DC2, start end of CY04. More ambitious goals. Encourage further development, based on lessons from DC1. One simulated month.
- DC3. Support for flight science production.

- Very large effort during the past ~9 months by many people.
- Instrument analysis:
 - done previously with earlier tools for AO, PDR, etc., demonstrating LAT meets requirements.
 - Now done again with new tools. More to do, but more than adequate for DC1.
- Fluxes
- Data formats, processing
- Science tools

Already a great success!

DC1

R.Dubois

- Focal point for many threads
 - Orbit, rocking, celestial coordinates, pointing history
 - Plausible model of the sky
 - Background rejection and event selection
 - Instrument Response Functions
 - Data formats for input to high level tools
 - First look at major science tools Likelihood, Observation Simulator
 - Generation of datasets
 - Populate and exercise data server at SSC & LAT
 - Code distribution on windows and linux
- Involve new users
- Teamwork!

Backgrounds

S.Ritz

- DC1 is an approximate modeling of one day of LAT data.
 - at face value, this means 400M background triggers (4kHz). [This is not the number generated, which is larger, since many miss the instrument.]
 - using an updated version of Bill Atwood's background rejection analysis shown in Rome, residual contamination of photon sample would be about ~6%.
- One-day science is generally NOT background limited. Several purposes to generating background for DC1:
 - exercise the machine, find the problems (already done!)
 - generate amounts of background needed anyway to complete the analysis.
- We therefore decided to unhook the background generation for DC1
 - Rejection analysis already at a sufficient level to estimate instrument performance for gammas (Aeff).
 - <u>Used these cuts on the photon sample for DC1. Provides a good</u> <u>description of impacts of background rejection.</u>
 - at normal incidence, Aeff asymptotes to 10,000 cm². At 100 MeV, ~4,500 cm²
 - small fall-off in area for E>10 GeV, will be improved soon. Not a background rejection issue.
 - Already at a sufficient level to make background a non-issue for DC1 science analyses.
 - This allows the background rejection analysis to proceed at its own pace.
- At end of DC1, both background rejection and signal analyses will be completed to the levels planned.

F.Longo

DC1 lessons learned

Std Cut files

- Why from dataServers not the stdCut file as default and the other data only as option?
- Use as default the events that passed the background, PSF, and energy resolution filters (i.e., the events for which the DC1 response functions apply)
- More kinds of response functions (e.g., a set that applies to the events that don't pass the PSF filter), but even so the event flags should be accessible in the data servers.
- Bias on Analysis!

DC1 lesson (already) learned Cf S.Ritz

- Lots of hard work by many people on the machinery up until the last minute.
 - Richard's talk
- Sky model is fairly rich and accurate. Some details could be better
 - no flaring sources implemented (though some variable sources might have day-long fluxes different from your expectation...)
 - 2 GRB "models" available
- No (intentional) hardware problems implemented.
 - decided to postpone to DC2, when ISOC is up and running
- No onboard filter in data path yet
 - similar to background rejection situation. The incremental loss of area (after other cuts) is now expected to be very small.
- Instrument response functions are not really mature.
 - some problems still. certainly good enough for DC1 science goals, however!

DC1 data

- FITS versus ROOT data
- Spacecraft pointing info only in FITS?
- Pointing history available as .dat or as separate tree in ROOT file?
- ROOT data server?

DC1 Minimum Results

S.Ritz

- The existence of the data sets and the volume of data generated for background analyses already meets one of the success criteria.
- A minimum set of plots and tables that we must collectively produce:
 - TABLE 1: found sources, ranked by flux (E>100 MeV). Table has the following columns
 - reconstructed location and error circle
 - flux (E>100 MeV) and error
 - significance
 - 3EG identification (yes or no) [note: DON'T assume DC1 sky is the 3EG catalog!]
 - extra credit:
 - » include flux below 100 MeV
 - » spectral indices of brightest sources
 - » comparison of 3EG position and flux characteristics with GLAST analysis
 - FIGURE 1: LogN-logs plot of TABLE1
 - TABLE 2: list of transients detected. Columns are
 - location and error circle
 - flux (E>100 MeV) and error
 - significance
 - duration
 - FIGURE 2: light curve
 - Extra credit: FIGURE 2a: spectra.

PLUS: reports of any physics surprises found.
 F.Longo DC1 lessons learned

MC Truth unveiled

- Scripting for Catalog generation
- How to analyze new sources? E.g. the Galactic Center
- Connection among different tools e.g. blind searching tool and likelihood analysis
- Take into account instrument behaviour in different ranges
- Success of GRB trigger algorithms

Source Detection

- Many methods developed (wavelets, voronoi tesselation..)
- Need compare the results
- Likelihood result on blind search detected sources
- Generation of catalog with different methods significance?
- Study of Interstellar emission

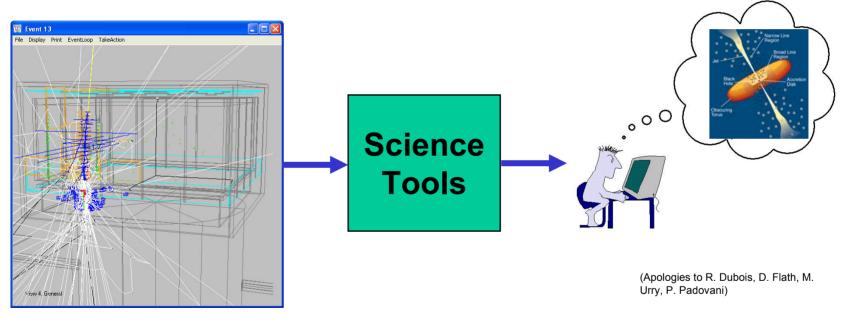
GRB analysis

- Lot of work in Italy and US
- 5 different trigger criteria
- Need a comparison
- Need to study onboard LAT trigger performances (e.g. for on ground follow up)
- Need to study weaker GRB near the detection limit and optimize trigger with realistic background
- Dividing the sky in several spatial bin is an effective way to reduce background
- Floating threshold and trigger window selections (time, events, ...) to be refined with variable background rates
- On board buffer with localization and timing info available for unbinned search on board
- Effects of CR on localization accuracy could be solved by weighting the events by their distance to accumulated centroid
- Need refinements in Spectral analysis

Beyond the minimum

S.Ritz

- Here are a few suggestions:
 - we may generate and release more days of data
 - better exercise tools and infrastructure
 - more transients
 - spectral analyses
 - localization studies
 - one-day localization of Vela is particularly interesting
 - analysis improvements
- But don't let this list limit you. The sky is the limit!

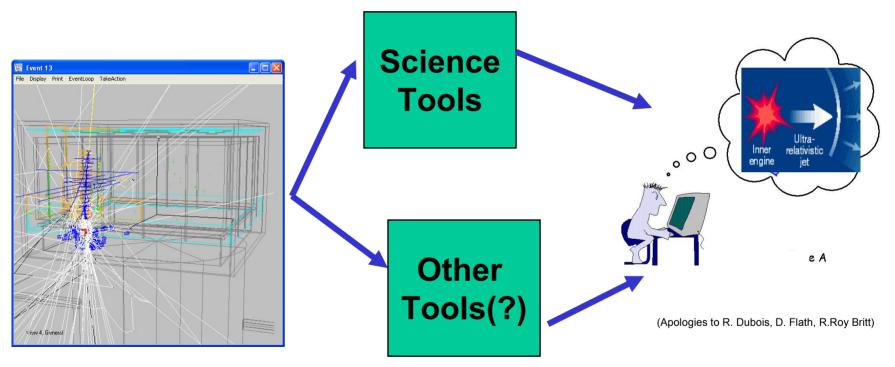

Beyond minimum results

- Source detection methods
- New analysis methods and/or languages
- Little usage of Science Tools?

DC1 closeout February 12-13, 2004

High-Level Analysis S.Digel and P.Nolan

(T. Usher)


Seth Digel & Patrick Nolan HEPL/Stanford Univ.

DC1 lessons learned

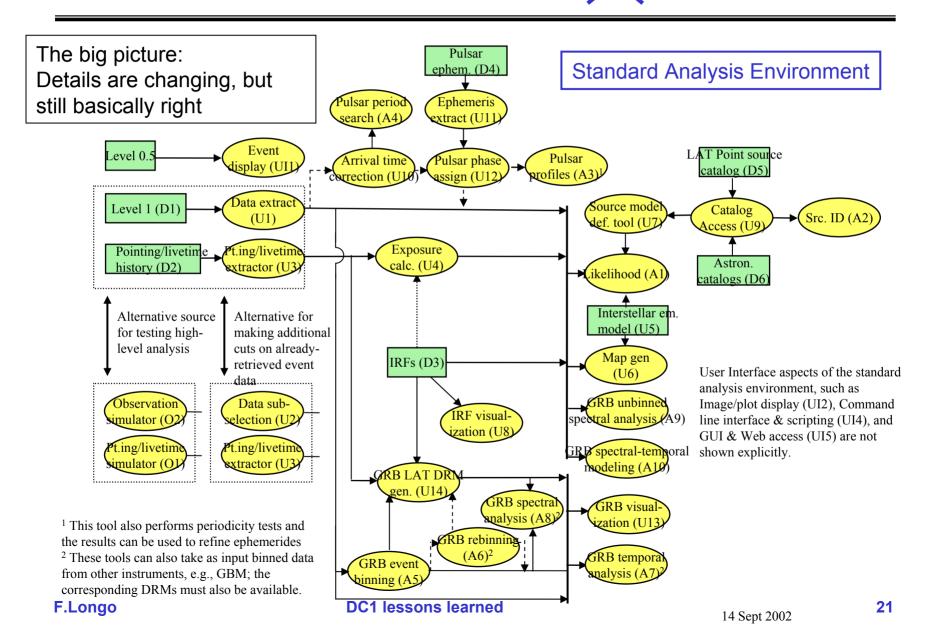
DC1 closeout February 12-13, 2004

DC1 Analysis

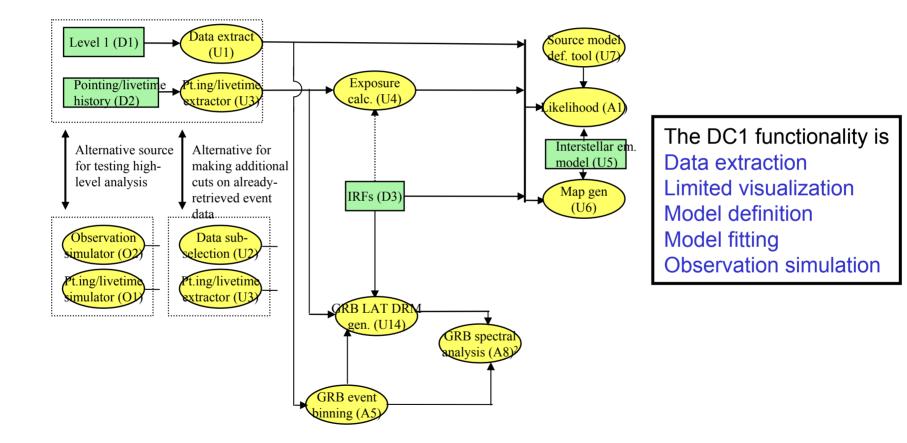
(T. Usher)

DC1 lessons learned

DC1 Tools


S.Digel and P.Nolan

- Data Challenge 1 is not about science
 - The emphasis is on the analysis techniques themselves and the tools to implement them
- What are the DC1 goals for the science tools?
 - Briefly, an end-to-end test of the system, going back to instrument simulation, event classification and generation of response functions, through high-level processing, and managing the flow of data in between
 - So we are at the high-level processing end of the chain now (more or less – will be some iteration, e.g., on event classes). We want to
 - shake test the science tools; actually they won't take a lot right now
 - introduce the analysis methods for gamma-ray astronomy with the LAT
 - get feedback on functionality from users and from developers

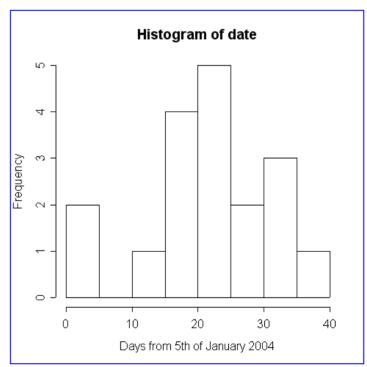

DC1 closeout February 12-13, 2004

S.Digel and P.Nolan Science Tools in DC3

All components are still prototypes

Implementation of Science Tools S.Digel and P.Nolan

- Reminder: the tools are implemented as FTOOLS
 HEASARC convention across missions
- You will notice that this defines much of the 'look and feel'
 - Provides a uniform interface
 - HOOPS for prompting at the command line
 - GUI is coming
- FITS files for data


Prototype Science Tools in DC1

- Many tools planned to be included in SAE not yet available
- GRB Tools
 - Trigger methods
 - GRB visualisation
 - GRB spectral analysis
 - GRB temporal analysis
- Exposure and Map generation
- Alternative source detection methods
- ROOT tools

DC1 communication issues

- Usage of Wiki page
 - a "cascade" model
- DC1 mailing list
 - ScienceTools usage mailing lists?
- cvs repository for DC1 tools?
 - Use the /users/ tree

Wiki usage (Riccardo)

DC1 lessons learned

- Astrophysical data analysis
- Software usage and reliability
- Documentation
- Data access and data server usage
- UI stuff
- Software installation and release
- Software infrastructure & framework
- Communication and Time frame

- Analysis issues
 - First analysis on Astro data
 - Transients:
 - Notification for deep observation
 - Not requested to be run by every user
 - Need of a Quick Look tool for DC2 study
 - Likelihood tool:
 - How to check fit quality?
 - Which statistical minimum for reasonable results?
 - Help from experienced users
 - In some cases incorrect FITS headers
 - Definition of Galactic diffuse emission (model, units ...)
 - SLAC installation of common Astro tools (FTOOLS, ds9, XSPEC..)

- Software:
 - Clear documentation for most tools
 - More files greater the possibility to do mistakes (could be FT2 information embedded in FT1?)
 - FT1 data and Exposure in different directions tests?
 - Need for Sanity checking on the inputs. (e.g. Likelihood tool with 'BACK' response functions without event filtering)
 - TsMap crashes
 - Different optimizers different results?
 - Most self-contained not help for developing own tools that fit within framework (e.g. read/visualize data, manipulate multidimensional arrays, get background model density at a given point, access the IRFs etc etc). Need more documentation on existing "base" tools
 - How to generate different Energy Bin fits file?
 - Plot tools within the SAE and exposure maps generation missing
 - ROOT format for exposure map or more general exposure tool
 - Coordinates specification (e.g. for modeldef)
 - CPU time

- Software reliability
 - Statistical interpretation of Likelihood
 - Need for comparison among different analysis

- Documentation:
 - Wiki pages good idea
 - Fine documentation of the science tools (for Linux users?)
 - Not updated to new versions
 - Need for dynamic documentation (e.g. galactic diffuse for obsSim)
 - Weekly status report?
 - Needs for tips on developing own models
 - Info on tool contact and updates on each web page

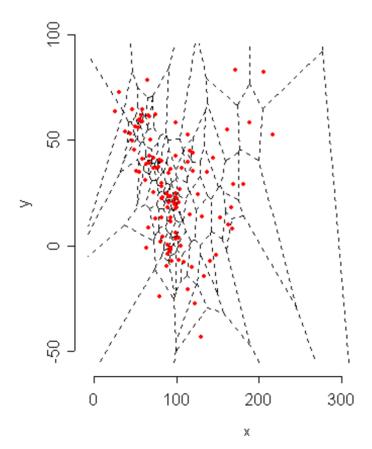
- Access to Data:
 - Some failures
 - Documentation on SSC better than SLAC data server (e.g. time selection units?)
 - Cut on tree variables directly?
 - Full data set available not from DataServers

- Coherent User Interface
 - Who used the Likelihood GUI?
 - At least command line with arguments from arbitrary directory
 - Unique settings startup command for analysis session
 - Simple usage explanation (e.g. "– help")
 - Tab completion or command history available
 - User should not worry about data and executable location
 - High priority for DC2 for ST to be distributed to the general community.

- Software Installation
 - Binary distributions (v1r0p1) very nice but which Linux version? (7.3 vs 9.0?)
 - New releases not publicly distributed as binary... Only "core" developers
 - Necessity for knowing how to include new features in newer version of packages
 - Windows vs Linux compilation and distribution

- Software infrastructure
 - Bookkeeping Info (events N, area, Energy spectrum parameters, energy range for events)
 - Messages from ScienceTools s/w (Info, Warning, etc)
 - Level control, name of algorithm, service, ..
 - Std message format
 - Setup of environment by automated way .(c)sh scripts not easily maintainable
 - **PFILES** definition for unique parameter file directory
 - Coding rules for avoiding compilation warnings

- Framework
 - FTOOLS structure for distributed software
 - How to extend or use other tools?
 - How to include new tools?



- General Things:
 - Communication issues: (FT1Energy fix, updates to data servers, new ST releases?)
 - Before holiday work caused net loss of time

Proposal

- Science Tools user meetings?
- Continue to analyse DC1 data before DC2!

Voronoi tesselation of GRB

Example of usefulness of communication

F.Longo

Conclusions

- DC1 a success!
- First analysis of astrophysical data for many of us
- Science Tools developments
- Work on Background and Filter
- DC1 data generation and storage
- Team collaboration

Acknowledgements

- Thanks to those who sent me comments
- Steve, Julie, Dirk, Toby, Jay, Jerry, Traudl, Seth, Benoit, Nicola, Gino, Claudia, Riccardo, Alessandro, Michael, Francesca, Monica, Luca

S.Digel and P.Nolan

- Details of the contents of the event summaries are still converging
- The interstellar emission model is still the model used by EGRET team (Bertsch et al. 1993, Hunter et al. 1997)
- The instrument response functions are defined only for the events that pass the filters presented by Bill Atwood at the collaboration meeting in Rome
 - Eventually we expect to have more than one event class
 - PSF and energy resolution are being defined on a grid of energies and inclination angles, with a analytic function fit. No interpolation of the parameters between grid points is attempted
 - The IRFs are not yet in CALDB, although this switch should be completely transparent to the user
- The interface to EGRET data and pointing/livetime history is not complete (and was not planned for DC1)

S.Digel and P.Nolan

- The DRM generator RspGen understands only circular cutout regions so far; this is not a limitation at all for analyzing bright GRBs, but the intent is to make it understand custom shapes for crowded fields
- The map generation tool does not exist yet
 - EventBin (GRB event binning) can make counts maps
 - Exposure maps can be generated with [what]
- No visualization is integrated with the tools yet
- The orbit and attitude simulation is still idealized and not yet a standalone tool