
Existing Perl/Oracle Pipeline

Daniel Flath (SLAC)
SAS J2EE Review

Nov 23, 2004

Requirements
– Handle MC, Data and be configurable to run arbitrary

linked tasks
– Envisaged as the heart of the ISOC (Instrument

Science Operations Center) triggering all its
automated work

• Will be in use for 10+ years
– Talks to central databases, batch system and file

servers in SCS
– Must run different tasks (eg flight data; MC; re-Recon)

in parallel and not choke with hundreds to thousands
of queued/running jobs

– Portability would be nice – for potential use at other
GLAST sites and as backup at the GSSC (Science
Support Center at Goddard)

Required Functionality

• automatically process Level 0 data
through reconstruction (Level 1)

• provide near real-time feedback to IOC
• facilitate the verification and generation of

new calibration constants
• re-process existing data
• produce bulk Monte Carlo simulations
• backup all data that passes through

Major Components

• relational database (management system)
• database access layer
• user interface
• scheduler
• execution layer

Components
Oracle Data

Oracle
Stored

Procedure
Code

Perl Stored
Procedure
Wrapper
Library

(auto-generated)

Perl Data
Storage
Classes

Perl Data
Management

Code
(logical operations)

Pipeline
Scheduler

&

Other
Utilities

Database Overview

• Currently Oracle, using Stored Procedures
for all query access

• Perl Module provided as entrypoint to
stored procedures (API)

• Primarily two sets of tables:
– Pipeline Management tables allow users to

configure processing flow of a pipeline
– Processing History tables record status of

processing and data

Task Configuration Tables

• Task Table
– Linked to by TaskProcess and Dataset Tables

• A task is comprised of 1 record in the task
table and 0 or more records in the
TaskProcess and Dataset tables

• The latter are related by a linked list of
Read and Write flags that determine
processing flow

TaskProcess and Dataset Tables

• A TaskProcess record contains all
information necessary to run a job (script
version, location, etc.)

• It’s links to Dataset records allow the
pipeline to determine where to find input
and where to write output datasets (files)
for the job

• These filenames are provided to the users’
wrapper scripts at job execution

Processing History Tables

• Records in the Run table represent
instances of processing for a Task

• TPInstance, and DSInstance records are
in the same way analogous to
TaskProcess and Dataset records

TPInstance and DSInstance Tables

• TPInstance tracks the state of processing
for a single job (Execution status, CPU
time, memory used, etc.)

• DSInstance records act as file descriptors
for datasets used in the processing chain
that is a run (File size, location on disk, file
format, data type, archive location, etc.)

Major Components

• relational database (management system)
• database access layer
• user interface
• scheduler
• execution layer

Database Overview

• Currently Oracle, using Stored Procedures
for all query access

• Perl Module provided as entrypoint to
stored procedures (API)

• Primarily two sets of tables:
– Pipeline Management tables allow users to

configure processing flow of a pipeline
– Processing History tables record status of

processing and data

Task Configuration Tables

• Task Table
– Linked to by TaskProcess and Dataset Tables

• A task is comprised of 1 record in the task
table and 0 or more records in the
TaskProcess and Dataset tables

• The latter are related by a linked list of
Read and Write flags that determine
processing flow

TaskProcess and Dataset Tables

• A TaskProcess record contains all
information necessary to run a job (script
version, location, etc.)

• It’s links to Dataset records allow the
pipeline to determine where to find input
and where to write output datasets (files)
for the job

• These filenames are provided to the users’
wrapper scripts at job execution

Processing History Tables

• Records in the Run table represent
instances of processing for a Task

• TPInstance, and DSInstance records are
in the same way analogous to
TaskProcess and Dataset records

TPInstance and DSInstance Tables

• TPInstance tracks the state of processing
for a single job (Execution status, CPU
time, memory used, etc.)

• DSInstance records act as file descriptors
for datasets used in the processing chain
that is a run (File size, location on disk, file
format, data type, archive location, etc.)

Current System, pros/cons
•Modification often more difficult
than rewriting
•Code often very slow running
compared to non-scripted
equivalent
•Development tools (to my
knowledge) lacking vs those
available for Java (ie Debugging)
•Database Stored Procedures
(thousands of LOC) not portable to
other RDMBSes (excepting,
perhaps, PostgreSQL)

•Development is very fast
•Interaction with O/S is effortless
(strong support of process-mgmt,
file-sys access, string
manipulation.)
•Strong, active user community –
(free) Modules available to do
everything. Feature additions are
often simply a matter of finding
appropriate libraries and gluing
them together.

