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ABSTRACT

Analyzing the data from the GLAST LAT will present some challenges

which are not found in EGRET work or other branches of astronomy. The small

number of photons means that approximate statistical methods such as χ2 tests

are not applicable. It will be necessary to use the full Poisson likelihood. The

broad field of view and scanning mode of viewing mean that the data will not

come packaged neatly in discrete observations. Any analysis, no matter how

limited, will probably require stitching together selected parts of the whole data

stream. The width of the point spread function varies with energy, angle of

incidence, and internal detector variables. In effect, each photon will have its

own PSF.

Calculation of likelihood values will involve multidimensional integrals. Some

of these integrals are displayed, and some simplifying techniques are given.

1. This is not X-ray astronomy

Before proceeding with more formal topics, I feel the need to point out some ways in

which the GLAST LAT (Large Area Telescope) [1] produces data which are very different

from that produced by X-ray astronomy instruments or even EGRET [2]. I have heard a

number of ideas circulating in the high-energy astronomy community which indicate that

these differences are not sufficiently appreciated.

• GLAST won’t stare at a fixed position on the sky. Most of the time it will point at

the earth zenith, sweeping around the sky once per ∼ 90 minute orbit. Any particular

point source will be visible for ∼ 40 minutes at at time. How to combine these

intervals is a choice the data analyst should be able to make at will.

• The LAT field of view is huge, > 2 steradians. Lots of interesting sources will be in

view at any time.
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• The point-spread function (PSF) is broad, a few degrees for 20-30 MeV photons, but

about 0.1◦ at 10 GeV (normal incidence). Sources will tend to overlap. There is a

strong, structured background from the Galactic plane. These factors mean that one

can’t cut out a single point source and analyze it in isolation. Any analysis must

involve a fairly large portion of the sky and it must simultaneously fit multiple point

sources and the background.

• There are not many photons. The Vela Pulsar, the brightest steady point source, will

produce a few dozen detected photons in a single orbital pass. We will be dealing

with many sources three orders of magnitude fainter. As with EGRET, we will be

analyzing sources with 50-100 photons collected over months of observations.

• Individual photon events are not simple. There will be thousands of bits of information

from the tracker and calorimeter. These need to be analyzed to distinguish photons

from cosmic rays and to estimate energy and direction. The software which does this

is part of the system, just as much as the detector hardware.

In summary, the data stream does not naturally divide into small portions which can

be studied in isolation. Each analysis will require selecting a fairly large fraction of the

database, generally discontinuous in time.

2. Likelihood

During its expected lifetime, the GLAST LAT will observe hundreds of millions of

photons, but for most analyses we will be interested in a subset of only a few hundred or

a few thousand photons. In general the data will be too sparse to allow the use of χ2 as

a statistical test; it will be necessary to calculate the Poisson likelihood. Each photon is

recorded individually, with characteristics such as energy E, direction p (α, δ or `, b), and

time t. There will also be other characteristics peculiar to the GLAST instrument, such

as conversion layer, earth zenith angle, and instrument polar angle. We can label all these

characteristics by λ, a vector of coordinates in an abstract parameter space. When we

establish quality cuts and regions of interest in the data, this will specify a subset Λ of the

parameter space.

For a likelihood analysis [3], there must be a model M(λ) which predicts the density

of detected photons in Λ. M includes both a sky model S, which describes the point and

diffuse sources of gamma-ray emission, and the instrument response functions. The sky

model S will include parameters such as source locations and fluxes which will be adjusted

to maximize the likelihood.
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Suppose Λ contains N detected photons indexed by the label i. The logarithm of the

likelihood of observing this set of photons is

lnL =
N∑

i=1

lnM(λi)−Npred, (1)

where

Npred =
∫

Λ
M(λ)dλ (2)

is the number of photons predicted by the model M . To calculate Npred requires no access

to the photon data.

We can produce an approximate likelihood by dividing Λ into small bins indexed by

the label ν. Let the νth bin have nν detected photons, an average model density M̄ν , a

central parameter value λν , and a volume ∆λν . The log likelihood of the model is

lnL =
∑

ν

[
nν ln M̄ν − M̄ν∆λν

]
. (3)

It is easy to see that equation (1) is recovered in the limit ∆λν → 0.

3. Instrument Response Functions

The instrument response of a gamma-ray telescope is usually characterized by three

functions or matrices. This begs the question whether this decomposition is an acceptable

approximation. It must be done this way, or we won’t be able to do any computations.

• The effective area A is equal to the detector’s actual projected area multiplied by the

probability that a photon will react in the detector and produce a recognizable shower

of particles. A is a function of the photon energy E and the angle of incidence. I

assume that there is no azimuthal dependence.

In the GLAST analysis, each photon-induced particle shower will be classified by

some internal variables which describe the quality of the software reconstruction.

These will probably include such things as the tracker layer in which the conversion

occurred, the number of resolved tracks, the number of “noise hits” in the tracker,

and whether the tracks cross tower boundaries. For now, we can lump all these extra

factors into a single index k. There will be a different effective area for each value of

k: Ak(E, cos θ), where θ is the detector angle of incidence. If z is the detector axis

unit vector, then the effective area for a sky direction p can be written Ak(E,p · z).
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• The energy dispersion D reflects the imperfection of the energy measurement. Some

energy leaks out the sides of the tracker or through the calorimeter and leakage

corrections are only approximate. There are fluctuations in the calorimeter light

output. Some energy is absorbed by passive material. If the true energy of a photon

is E, then the probability density of the estimated energy E ′ is Dk(E
′;E, cos θ). As

with the effective area there are different D functions for different types of events.

• The point spread function (PSF) P reflects the imperfection of the direction

measurement. The direction must be estimated by a weighted sum of the directions

of the secondary charged particle tracks, which are perturbed by scattering in the

tracker planes. If the true photon direction is p and the energy is E, the probability

density of the estimated direction p′ is Pk(p
′; p, E, cos θ). If the PSF is azimuthally

symmetric, it can be written as Pk(|p′ − p|;E, cos θ). It is worth emphasizing that the

width of the PSF varies strongly with E and cos θ, and that it will also be different

for each k. In effect, there is a different PSF for each detected photon.

4. A Toy Problem

Let’s work on a toy problem to illustrate how real calculations could be done. The

sky model has a single point source at a fixed position p with no diffuse background. The

source has an energy spectrum s(E) with no time variation. The λ variables are estimated

photon energy (E ′), estimated direction (p′), time (t), and the internal index (k). There is

also a history of the detector pointing direction z(t).

M(E ′,p′, t, k) =
∫ ∞

0
Dk(E

′;E,p · z(t))Pk(|p′ − p|;E,p · z(t))Ak(E,p · z(t)) s(E) dE (4)

lnL =
∑

i

lnM(E ′i,p
′
i, ti, ki)−Npred (5)

Npred =
∑

k

∫ ∫ ∫
M(E ′,p′, t, k) dE ′dp′dt (6)

The goal is to adjust the parameters of s(E) to maximize L.

In practice, we don’t use continuous functions. The response functions and the source

energy spectrum are stored as matrices or vectors to be interpolated as necessary. Integrals

are replaced by sums. The D and P functions are 4-dimensional objects, while A is only

3-dimensional. The combination

Rk(E
′, |p′ − p|;E, cos θ) ≡ Dk(E

′;E, cos θ)Pk(|p′ − p|;E, cos θ)Ak(E, cos θ) (7)
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which appears in equation (4) is a 5-dimensional object. If each index has 100 values, then

a 4-dimensional object can be stored in 400 megabytes. This is not an unreasonable burden.

However, a 5-dimensional object will require 40 GB, which is something of a challenge to

store and use. Thus the required values of R will probably be calculated on the fly.

Suppose that the E integration requires evaluating our functions at NE different values

of the photon energy. With N detected photons, N ·NE evaluations of the functions D, P ,

and A are required to produce the first term of (5).

The Npred term is subject to some simplification for this particular problem. If the

region Λ is large enough,
∫
Dk(E

′;E, cos θ)dE ′ = 1 and
∫
Pk(|p′ − p|;E, cos θ)dp′ = 1, so

Npred =
∑

k

∫ ∫
Ak(E,p · z(t))s(E)dEdt. (8)

The number of function evaluations is proportional to the length of the observation. Since

the 4-dimensional objects D and P have been integrated out, the cost of each evaluation

should be relatively low.

Note that the likelihood calculation can be written as

lnL =
∑

i

[ln
∫
Gi(E)s(E)dE]−

∫
H(E)s(E)dE. (9)

Most of the effort goes into evaluating Gi(E) and H(E). Once this is done, the values can

be stored. It will then be relatively easy to optimize the parameters of s(E).

5. Binned Likelihood

Equation (3) shows a way to produce an approximate likelihood value. This method

has an obvious drawback: Information is lost when photons are treated as if their

individual λ values are equal to λν . Furthermore, the approximation M̄ν ≈ M(λν) is

accurate only for small bins. Otherwise a more elaborate calculation is needed to estimate

M̄ν = (∆λν)
−1
∫
∆λν

M(λ)dλ.

However, practical experience with EGRET data has shown that the binned calculation

(3) can have an advantage over the “exact” formula (1) in terms of accuracy. The specific

difficulty comes about because of the normalization of the PSF. The energy-dependent PSF

is available out to 20◦ from the true photon direction. Any tail beyond 20◦ is considered

negligible. This turns out to be a false assumption at low energy. When the two terms

of (1) are calculated separately, each is much larger than their difference. A tiny error in

normalization (which affects the Npred term more seriously) can have a large effect on the
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result. The binned calculation (3) is relatively immune to such problems because the same

value of M̄ν is used in both terms. Taking a term-by-term difference also tends to reduce

roundoff error.

The binned calculation will always require less computation than the unbinned version.

The unbinned Npred integration (2) is almost the same thing as the sum (3) since most of

the work goes into finding M̄ν . The additional sum over detected photons in (1) may or

may not be a major addition, depending on the number of photons.

To do a binned calculation it is necessary to decide how to divide up Λ. In general,

detailed studies have not yet been done to determine the necessary accuracy or how to

achieve it. Some work has been done, though, on energy binning.

This work was inspired by a shortcoming in the EGRET data analysis. The most

common science task was to find point sources, determining their fluxes and locations. This

was done by considering a single broad energy bin from 100 MeV to ∼ 30 GeV. Since the

width of the PSF varies greatly over this range, there was a considerable loss of precision in

the position determination. Bill Tompkins did simulations with different numbers of energy

bins [4]. He concluded that 4 or 5 energy bins would be adequate for GLAST data, giving

almost the same results as an unbinned analysis. Of course, more bins will be needed for

spectroscopic work.

There is no explicit time dependence in this model. Nevertheless the scanning of the

detector axis makes the response functions for any p vary with time. Thus to do an integral

such as (8), time will need to be binned on a scale determined by the orbital period and

the width of the field of view. In scanning mode the pointing direction will change about

4◦ per minute. This suggests that 1-minute time bins should be adequate for everything

except studies of rapid pulsations.

The size of the angular bins should be energy-dependent, like the PSF. At the lowest

end of the GLAST energy range, bins of 1◦ or so would be adequate. For high-energy

photons, something at least an order of magnitude finer (on a linear scale) will be needed.

6. Multiple point sources

Consider a more realistic problem. Suppose our sky model contains multiple point

sources and diffuse emission, both galactic and extragalactic. Assume that the sources

are steady emitters and that the “shapes” of the diffuse components are known. Write

S(E, t,p) =
∑
j Fjφj(E,p). The index j numbers the point sources and the background
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components. Normalize φj so that
∫ ∫

φj(E,p)dEdp = 1. Thus Fj is the flux due to each

source or component. Now p is a variable location on the sky, not a fixed position as it was

before.

Now

M(E ′,p′, t, k) =
∑

j

Fj

∫ ∞

0

∫
Dk(E

′;E,p · z(t))Pk(|p′ − p|;E ′,p · z(t))

×Ak(E,p · z(t))φj(E,p)dp dE. (10)

Comparing this to the simpler equation (4) shows that new features have been added, a

sum over the sources and background components (j) and a two-dimensional integral over

the chosen portion of the sky (p). Whatever the complexity of our toy calculation, this

seems to be worse by a large factor.

Things are not as bad as they might seem. For all the point sources,

φj(E,p) = hj(E)δ(p− pj), where pj is the position of source j and hj(E) is its

normalized energy spectrum. This removes most of the p integrals. Only the (typically

two?) background components must be integrated. In the EGRET analysis the background

components were treated as known, fixed quantities, except for their overall normalizations,

so pre-integrated versions were made available. Thus the complexity can be made to be

proportional to the number of point sources + background components.

Take note of a special case. If the point source positions are all considered to be fixed,

then the φj contain no adjustable parameters. Only the Fj values are adjustable. In this

case it can be proven that there is one global maximum maximum of L with no local

maxima, and the Hessian matrix

Hjk =
∂2 lnL
∂Fj∂Fk

= −
∑

i

φj(λi)φk(λi)

M(λi)2
(11)

is always negative-definite. These conditions can simplify the fitting greatly.

7. Miscellaneous parting notes

No distinction has been made between the tasks of finding sources, estimating fluxes in

chosen energy bands, and fitting model spectra. All involve adjusting model parameters to

maximize L. In EGRET analysis, the first two tasks were done by one program, and the

third by another which accepted data from the first. This led to difficulties because the

data passed between programs was not really suitable for the job. Approximations were
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made and information was lost. I strongly recommend that the GLAST software tools be

designed with the goals in mind from first to last.

One drawback of likelihood analysis is that it doesn’t produce a goodness-of-fit

measure. Those of us who grew up using χ2 for everything are bound to mourn this loss.

It is lovely to be sure that your model is adequate to explain the data. Pure likelihood

methods can answer questions like “Will the fit be improved significantly if I put another

point source at x, y?” Unfortunately there are often a multitude of such questions available.

Bayesian methods offer a way out, perhaps at the cost of many more likelihood calculations.
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