
A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 1'

&

$

%

A Likelihood Tool Prototype for

Analyzing GLAST/LAT Data

Jim Chiang

GLAST Science Support Center

Pat Nolan, Karl Young, Toby Burnett

LAT Team

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 2'

&

$

%

Preliminaries

• Instrument Response Functions: It is conventional to represent the instrument response

in terms of three functions:

D(E′;E, p̂) ≡ Energy Dispersion (1)

P (p̂′;E, p̂) ≡ Point Spread Function (2)

A(E, p̂) ≡ Effective Area (3)

The energy dispersion and point spread function are the probability densities of measuring an

apparent energy E′ and apparent direction p̂′, respectively, for a detected photon that has true

energy E and direction p̂.

The total response of the instrument is given by

R(E′, p̂′;E, p̂) = D(E′;E, p̂)P (p̂′;E, p̂)A(E, p̂) (4)

=
dσ

dE′dp̂′
(E, p̂). (5)

As the latter relation indicates, this quantity can be interpreted as the differential cross-section

of the telescope. Note that the total response need not factor into the three constituent parts,

D, P , and A.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 3'

&

$

%

• Gamma-Ray Source Model: The photon specific intensity from a source i will be denoted

by
dN

dEdp̂ dAdt

∣

∣

∣

∣

i

= Si(E, p̂, t). (6)

For point sources, such as pulsars or AGNs, the angular distribution of photons on the sky is

a δ-function:

Si(E, p̂, t) = si(E, t)δ(p̂− p̂i). (7)

Diffuse sources include the Galaxy and the extragalactic diffuse emission (the latter of which

may actually comprise unresolved AGNs), as well as discrete extended sources such as a su-

pernova remnant or the LMC.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 4'

&

$

%

• Given the above definitions, the expected distribution of detected photons is

M(E′, p̂′, t) =

∫

dEdp̂R(E′, p̂′;E, p̂, t)S(E, p̂, t) (8)

=
∑

i

Mi(E
′, p̂′, t) (9)

where

S(E, p̂, t) ≡
∑

i

Si(E, p̂, t), (10)

and

Mi(E
′, p̂′, t) =

∫

dEdp̂R(E′, p̂′;E, p̂, t)Si(E, p̂, t). (11)

A time-dependence has been added to the total response to account for the varying orientation

of the LAT with respect to the Celestial sphere as the instrument scans. The integrals in these

expressions should in principle be evaluated over all possible true energies, 0 < E < ∞, and

over all possible directions, p̂ ∈ 4π sr. In practice, the limited range of the LAT response

functions will allow us to impose cut-offs at finite energies and over smaller solid angles.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 5'

&

$

%

• Unbinned log-Likelihood: Labeling individual photon events with the index j, the loga-

rithm of the (unbinned) Poisson likelihood is

logL =
∑

j

[

logM(E′
j , p̂

′

j , tj)
]

−
∑

i

Ni,pred (12)

where the predicted number of photons from source i is

Ni,pred =

∫

ROI

dE′dp̂′dtMi(E
′, p̂′, t) (13)

The Ni,pred integrals are performed over the extraction region or “region-of-interest” (ROI),

which is the volume of the (E ′, p̂′, t) data space that is being considered.

We shall refer to the first term of eq. 12 as the “data sum” and the second term as the “model

integral”.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 6'

&

$

%

Function, Arg, Parameter Classes

In order to translate the preceding description to C++, we use these classes for the implementation

of the various constituents of the likelihood calculation.

A Function object implements

F (x; ~α), (14)

where

• F ← Function object.

• x ← Arg object. These guys are passed by reference to the Arg abstract base class, with the

concrete sub-classes wrapping various kinds of data — dArg ⇔ double, EventArg ⇔ Event,

SkyDirArg ⇔ astro::SkyDir, etc..

• ~α ← vector of Parameter objects, each of which encapsulates the information we wish to

associate with each model parameter: value, upper and lower bounds, scale factor, whether its

free or fixed, etc..

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 7'

&

$

%

Parameter Class

Each Function object has a vector of these Parameter objects as a data member called m parameter.
Many of the methods provided by the Function class allow for the Parameters and derivatives
of the Function object with respect to those Parameters to be accessed singly or in groups.
The group access methods are particularly important as they provide the means by which the
Optimizer objects interact with the Statistic objects:

void Function::setFreeParamValues(const std::vector<double> ¶mVec) {

if (paramVec.size() != getNumFreeParams()) {

// ...exception stuff...

} else {

std::vector<double>::const_iterator it = paramVec.begin();

setFreeParamValues_(it);

}

}

std::vector<double>::const_iterator Function::setFreeParamValues_(

std::vector<double>::const_iterator it) {

for (unsigned int i = 0; i < m_parameter.size(); i++)

if (m_parameter[i].isFree()) m_parameter[i].setValue(*it++);

return it;

}

The method setFreeParamValues (...) is reimplemented in CompositeFunction and

SourceModel.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 8'

&

$

%

Arg Class

By wrapping an argument x in an Arg sub-class, one can have the resulting object passed by
reference in the argument lists of Function’s methods . This allows the derivative access methods
of Function to be inherited by sub-classes transparently even though the underlying data-types
of the Function arguments differ. Access to the data in the concrete sub-classes (dArg, EventArg,
SkyDirArg, SrcArg) is achieved in the Function sub-class implementations by down-casting. For
example, the following implements eq. 12:

double logLike_ptsrc::value(const std::vector<double> ¶mVec) {

setFreeParamValues(paramVec); // inherited from Function via

// SourceModel’s setFreeParamValues_ method

double my_value = 0;

// the "data sum"

for (unsigned int j = 0; j < m_events.size(); j++) {

EventArg eArg(m_events[j]);

my_value += m_logSrcModel(eArg); // m_logSrcModel’s parameters are updated

// automatically through SourcModel::s_sources

}

// the "model integral", a sum over Npred for each source

for (unsigned int i = 0; i < getNumSrcs(); i++) {

SrcArg sArg(s_sources[i]);

my_value -= m_Npred(sArg);

}

return my_value;

}

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 9'

&

$

%

The real utility of Arg:

void Function::fetchDerivs(Arg &x, std::vector<double> &derivs, bool getFree) const {

if (!derivs.empty()) derivs.clear();

for (unsigned int i = 0; i < m_parameter.size(); i++) {

if (!getFree || m_parameter[i].isFree())

derivs.push_back(derivByParam(x, m_parameter[i].getName()));

}

}

double PowerLaw::derivByParam(Arg &xarg, const std::string ¶mName) const {

double x = dynamic_cast<dArg &>(xarg).getValue();

//... consistency checks, exceptions, etc....

switch (iparam) {

case Prefactor:

return value(xarg)/my_params[Prefactor].getTrueValue()

*my_params[Prefactor].getScale();

break;

case Index:

return value(xarg)*log(x/my_params[Scale].getTrueValue())

*my_params[Index].getScale();

break;

//...

default:

break;

}

return 0;

}

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 10'

&

$

%

Function Sub-Classes for Source Modeling

• PowerLaw, ConstantValue, Gaussian, AbsEdge: These are the building blocks of modeling

sources. More such classes can be added by us, or by clients, if desired.

• CompositeFunction (ProductFunction, SumFunction): These classes can be used to com-

bine existing Function objects that have the same Arg-type to produce more complicated

Functions for modeling source characteristics without requiring the client to provide new

Function sub-classes.

• SkyDirFunction: This class wraps a SkyDir object in a Function context so that sky coor-

dinates, such as RA and Dec, can be treated as fit parameters.

• SpatialMap: This class allows a FITS image file to serve as a template for the spatial distri-

bution of emission from an extended source. The Galactic diffuse model used by EGRET is

an example.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 11'

&

$

%

Source Classes

• Gamma-ray sources must implement the following four methods (which are pure virtual func-

tions in the Source base class):

– fluxDensity(Event &) =Mij ≡Mi(E
′
j , p̂

′
j , tj) for a source i and a photon event j.

– fluxDensityDeriv(Event &, string ¶mName) = ∂Mij/∂α for a parameter α.

– Npred() = Ni,pred =
∫

ROI
Mi(E

′, dp̂′, t)dE′dp̂′dt.

– NpredDeriv(string ¶mName) = ∂Ni,pred/∂α.

The first two methods are independent of the ROI cuts and do not pertain to any particular

fit statistic. The latter two methods are used specifically for unbinned likelihood and are

implemented differently for point-like and diffuse sources.

• Spatial and spectral components are assumed to factor, with separate Function objects de-
scribing each. From PointSource:

void setDir(const astro::SkyDir &dir, bool updateExposure = true) {

m_dir = SkyDirFunction(dir);

m_functions["Position"] = &m_dir;

if (updateExposure) computeExposure();

}

void setSpectrum(Function *spectrum) {

m_spectrum = spectrum->clone();

m_functions["Spectrum"] = m_spectrum;

}

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 12'

&

$

%

PointSource Class

Because their spatial distribution is a δ-function, point-like sources are relatively straight-forward

to implement. For a source i with fixed location, p̂i, one need only integrate the exposure at that

location once at the outset of the calculation,

εi(E) =

∫

ROI

dE′dp̂′dtR(E′, p̂′;E, p̂i, t), (15)

so that the predicted number of photons for this source is given by

Ni,pred =

∫

dEsi(E; ~αi)εi(E). (16)

Important simplifications:

• The source spectrum is constant — usually ok for relatively small numbers of photons.

• The source location is not allowed to vary in the fitting process.

– The boundary of the data space, i.e., the ROI, can be complex owing to zenith angle cuts

(to limit Earth albedo contribution), etc..

– PSF may not have many symmetries.

– Fixed source location allows eq. 15 to be computed once for a given set of ROI cuts.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 13'

&

$

%

DiffuseSource Class

As we have mentioned, we assume, largely for tractability, that the photon specific intensity from

a DiffuseSource object factors into separate spectral and spatial components:

Si(E, p̂) = si(E)S̃i(p̂) (17)

Therefore, in order to have spectral variation across an extended source, that source must be

composed of a sufficient number of smaller DiffuseSource objects, each having its own Function

object to model its spectrum. This approach is consistent with tessellation schemes, such as HTM

or HEALPix, that have been proposed to model the diffuse Galactic emission.

Because of the extended nature of S̃i(p̂), the implementation of DiffuseSource is assisted by the

following two classes:

• SpatialMap:

– Objects of this class return interpolated values from a FITS image file as a function of

SkyDir position. This allows DiffuseSource objects to use a FITS image as a template

for the spatial distribution of the source emission.

– However, DiffuseSource objects can use any Function object that returns a scalar value

as a function of SkyDir position, e.g., ConstantValue is used to model the extragalactic

diffuse emission as isotropic.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 14'

&

$

%

• ExposureMap:

– This is a frame stack (or data cube) of exposure as a function of true energy and sky

position.

– A map can be computed, if desired, by the computeMap(...) method, which creates an

array of PointSource objects and uses the PointSource::computeExposure(...) method

(eq. 15). NB: For fitting of PointSource locations, exposures could be interpolated from

an appropriate ExposureMap object.

For each DiffuseSource object i, the spatially-integrated exposure is calculated as a function

of energy using the exposure map, which we denote by ε(E, p̂):

εi(E) =

∫

dp̂S̃i(p̂)ε(E, p̂). (18)

The method DiffuseSource::integrateSpatialDist() computes this integral by calling the

ExposureMap::integrateSpatialDist(...) method. Armed with the resulting εi(E), eq. 16

then gives the predicted number of photons for DiffuseSource objects, just as it does for

PointSource objects.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 15'

&

$

%

SourceModel Classes

• Objects of this class are composites of Source objects, which are in turn composites of
Function objects. The Source objects are stored as cloned pointers in the static data member
vector s sources. This ensures that the sub-classes, Statistic and logSrcModel, use the
same set of Source objects and Parameters in their calculations.

void SourceModel::addSource(Source *src) {

// loop over sources to ensure unique names

for (unsigned int i = 0; i < s_sources.size(); i++)

assert((*src).getName() != (*s_sources[i]).getName());

// add a clone of this Source to the vector

s_sources.push_back(src->clone());

// add the Parameters to the m_parameter vector

Source::FuncMap srcFuncs = (*src).getSrcFuncs();

Source::FuncMap::iterator func_it = srcFuncs.begin();

for (; func_it != srcFuncs.end(); func_it++) {

std::vector<Parameter> params;

(*func_it).second->getParams(params);

for (unsigned int ip = 0; ip < params.size(); ip++)

m_parameter.push_back(params[ip]);

}

}

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 16'

&

$

%

• Group parameter access methods are based on Hippodraw’s FunctionBase class. Iterators for
the parameter value vector are passed and returned that allow the set[Free]ParamValues ()
methods to be called in succession:

std::vector<double>::const_iterator SourceModel::setFreeParamValues_(

std::vector<double>::const_iterator it) {

for (unsigned int i = 0; i < s_sources.size(); i++) {

Source::FuncMap srcFuncs = (*s_sources[i]).getSrcFuncs();

Source::FuncMap::iterator func_it = srcFuncs.begin();

for (; func_it != srcFuncs.end(); func_it++)

it = (*func_it).second->setFreeParamValues_(it);

}

syncParams(); // this updates m_parameter

return it;

}

Recall from Function:

std::vector<double>::const_iterator Function::setFreeParamValues_(

std::vector<double>::const_iterator it) {

for (unsigned int i = 0; i < m_parameter.size(); i++)

if (m_parameter[i].isFree()) m_parameter[i].setValue(*it++);

return it;

}

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 17'

&

$

%

Response Classes: Aeff, Psf

• These classes are Singleton since only one set of instrument response data and one set of

spacecraft data will be used to analyze any given dataset of photons.

• Instances of these classes are functors, but they do not inherit from Function since they do

not have parameters that are adjusted in the fitting process. Also, there is no need to wrap

their arguments using sub-classes of Arg. Their function call operators, (), are overloaded so

that their return values can be accessed either as a function of instrument or sky coordinates.

• Example of use (see eq. 11 and note the effects of the δ-functions in sky location and energy):

double PointSource::fluxDensity(double energy, double time,

const astro::SkyDir &dir) const {

// Scale the energy spectrum by the psf value and the effective area

// and convolve with the energy dispersion (now a delta-function in

// energy), all of which are functions of time and spacecraft attitude

// and orbital position.

Psf *psf = Psf::instance();

Aeff *aeff = Aeff::instance();

dArg energy_arg(energy);

double spectrum = (*m_spectrum)(energy_arg);

double psf_val = (*psf)(dir, energy, m_dir.getDir(), time);

double aeff_val = (*aeff)(energy, m_dir.getDir(), time);

return spectrum*psf_val*aeff_val;

}

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 18'

&

$

%

The latResponse Package

A set of abstract base classes that are intended to define a minimal, but complete interface to the

response functions:

class IPsf {

public:

virtual ~IPsf() {}

/// Pure virtual method to define the interface for the member

/// function returning the point-spread function value.

/// @param appDir Apparent (reconstructed) photon direction.

/// @param energy True photon energy in MeV.

/// @param srcDir True photon direction.

/// @param scZAxis Spacecraft z-axis.

/// @param scXAxis Spacecraft x-axis.

virtual double value(const astro::SkyDir &appDir,

double energy,

const astro::SkyDir &srcDir,

const astro::SkyDir &scZAxis,

const astro::SkyDir &scXAxis) const = 0;

// other stuff....

};

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 19'

&

$

%

“Choice” of response functions is determined at object creation. Consider the effective area con-

structors for GLAST25 vs EGRET:

class AeffGlast25 : public IAeff, public Glast25 {

public:

AeffGlast25(const std::string &filename, int hdu)

: Glast25(filename, hdu) {readAeffData();}

// other stuff...

};

class AeffEgret : public latResponse::IAeff, public RespEgret {

public:

AeffEgret(int caltbl, int eclass, int tascco, int ivp, int tdmode = 0x0fff)

: RespEgret(tdmode) {m_aeff.init(caltbl, eclass, tascco, ivp);}

// other stuff...

};

Both of these classes must implement the IAeff::value(...) method using the same interface.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 20'

&

$

%

Classes for Manipulating Data

• Table: For accessing FITS binary table files.

• FitsImage: For accessing FITS image files.

• Event: An n-tuple containing photon arrival time, apparent direction and energy, etc.. Also

stored in this object is event-specific response information that is used in the calculation of

DiffuseSource::fluxDensity(Event &). In general, this information takes the form of an

energy-dependent response:

rji(E) =

∫

dp̂S̃i(p̂)R(E
′
j , p̂

′

j ;E, p̂, tj), (19)

where S̃i(p̂) is the angular distribution of photons from source i. The flux density is then

Mi(E
′
j , p̂

′

j , tj) =

∫

dE rji(E)si(E), (20)

where si(E) is the source spectrum. The rjis are computed using the

Event::computeResponse(...) methods and are stored in the Event::diffuse response

data member vector.

• RoiCuts: Cuts in energy, direction, and time cuts used selecting of the photons for analysis.

• ScData: Spacecraft data including the instrument attitude, whether it’s in the SAA, etc., all

as a function of time.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 21'

&

$

%

Classes Used for Analysis

• Statistic: As part of the SourceModel hierarchy, these objects use the event and spacecraft

data along with the source model to provide objective functions for fitting the model parame-

ters. The unbinned log-likelihood is the canonical example, but any sort of Statistic object

may be defined.

• Optimizer: The sub-classes of Optimizer implement various methods for finding the maxima

of Statistic functions. Currently implemented are wrappers for the Minuit variable-metric

method and the BFGS quasi-Newton method. Both methods can handle simply-bounded

parameters.

• Mcmc: This class uses the variable-at-a-time, Metropolis-Hastings update method to sam-

ple parameter space and thereby characterize the posterior distribution embodied by a given

Statistic. Prior distributions can be applied to allow for a Bayesian interpretation of the

parameter uncertainties and significances.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 22'

&

$

%

Unit Tests

• FunctionTest: This class provides a standard set of tests that should be used to provide min-

imal verification of a Function sub-class. It checks for consistent Parameter access, compares

Function evaluations with known values for a user-supplied vector of Function Args, com-

pares the derivatives provided by the Function with numerical estimates, and it tests value

and derivative access for free and fixed parameters.

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 23'

&

$

%

Using the A1 Classes: Analyzing Simulated LAT Data

From the test program:

void fit_DiffuseSource() {

// center the ROI on 3C 279

double ra0 = 193.98;

double dec0 = -5.82;

RoiCuts::setCuts(ra0, dec0, 20.);

// root name for the observation data files

std::string obs_root = "diffuse_test_5";

// read in the spacecraft data

std::string sc_file = test_path + "Data/" + obs_root + "_sc_0000";

int sc_hdu = 2;

ScData::readData(sc_file, sc_hdu);

std::string expfile = test_path + "Data/exp_" + obs_root + "_new.fits";

// compute a new exposure map for these data

// ExposureMap::computeMap(expfile, 30., 60, 60, 10);

// must read in the exposure file prior to creating the SourceFactory

// object since it contains DiffuseSources

ExposureMap::readExposureFile(expfile);

SourceFactory srcFactory;

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 24'

&

$

%

DiffuseSource *ourGalaxy = dynamic_cast<DiffuseSource *>

(srcFactory.makeSource("Milky Way"));

DiffuseSource *extragalactic = dynamic_cast<DiffuseSource *>

(srcFactory.makeSource("EG component"));

Source *_3c279 = srcFactory.makeSource("PointSource");

_3c279->setDir(ra0, dec0);

_3c279->setName("3C 279");

// create the Statistic

logLike_ptsrc logLike;

// add the Sources

logLike.addSource(ourGalaxy);

logLike.addSource(extragalactic);

logLike.addSource(_3c279);

// read in the data

std::string event_file = test_path + "Data/" + obs_root + "_0000";

logLike.getEvents(event_file, 2);

// There are a few options for computing the DiffuseSource Event responses:

// individually...

// logLike.computeEventResponses(*ourGalaxy);

// logLike.computeEventResponses(*extragalactic);

// by constructing a vector of the targeted DiffuseSources...

// std::vector<DiffuseSource> srcs;

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 25'

&

$

%

// srcs.push_back(*ourGalaxy);

// srcs.push_back(*extragalactic);

// logLike.computeEventResponses(srcs);

// or the default way, for all of the DiffuseSources in the SourceModel...

logLike.computeEventResponses();

// do the fit

verbose = 3;

Minuit myMinuitObj(logLike);

myMinuitObj.find_min(verbose, .0001);

std::vector<double> sig = myMinuitObj.getUncertainty();

for (unsigned int i=0; i < sig.size(); i++) {

std::cout << i << " " << sig[i] << std::endl;

}

std::vector<std::string> srcNames;

logLike.getSrcNames(srcNames);

// replace (or add) each Source in srcFactory for later use

std::vector<std::string> factoryNames;

srcFactory.fetchSrcNames(factoryNames);

for (unsigned int i = 0; i < srcNames.size(); i++) {

Source *src = logLike.getSource(srcNames[i]);

srcFactory.replaceSource(src);

}

} // fit_DiffuseSource

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 26'

&

$

%

Using the Source Classes: the SourceFactory Constructor

SourceFactory::SourceFactory() {

// Add a PointSource modeled by a PowerLaw as the default

// Note that the default constructor is used here, which means that

// exposure will not be computed. A setDir(ra, dec, [true]) will

// cause the exposure to be computed and thus requires prior

// specification of the ROI cuts and spacecraft data.

PointSource ptsrc;

// Add a nominal PowerLaw spectrum. Note that one needs to reset the

// Parameters from the default and add sensible bounds.

SpectrumFactory specFactory;

Function *powerLaw = specFactory.makeFunction("PowerLaw");

// Use a nominal Parameter set for now with Prefactor = 10 (assuming a

// scaling of 1e-9, set below), Index = -2, and Scale = 100 (MeV).

// Set the bounds here as well.

std::vector<Parameter> params;

powerLaw->getParams(params);

params[0].setValue(10); // Prefactor

params[0].setScale(1e-9);

params[0].setBounds(1e-3, 1e3);

params[1].setValue(-2); // Index

params[1].setBounds(-3.5, -1);

params[2].setValue(100); // Scale (this is fixed by default)

powerLaw->setParams(params);

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 27'

&

$

%

ptsrc.setSpectrum(powerLaw);

addSource("PointSource", &ptsrc, true);

// Add the map-based Galactic Diffuse Emission model;

// assume that the FITS file is available in a standard place...

std::string galfile = "../src/test/Data/gas.cel";

SpatialMap galacticModel(galfile);

galacticModel.setParam("Prefactor", 1.1*pow(100., 1.1));

try {

DiffuseSource ourGalaxy(&galacticModel);

ourGalaxy.setName("Milky Way");

// Provide ourGalaxy with a power-law spectrum.

PowerLaw gal_pl(pow(100., -2.1), -2.1, 100.);

gal_pl.setName("gal_pl");

gal_pl.setParamScale("Prefactor", 1e-5);

gal_pl.setParamTrueValue("Prefactor", pow(100., -2.1));

gal_pl.setParamBounds("Prefactor", 1e-3, 1e3);

gal_pl.setParamBounds("Index", -3.5, -1);

ourGalaxy.setSpectrum(&gal_pl);

addSource("Milky Way", &ourGalaxy, true);

} catch (ParameterNotFound &eObj) {

std::cerr << eObj.what() << std::endl;

throw;

} catch (LikelihoodException &likeException) {

std::cerr << "Likelihood::SourceFactory: "

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 28'

&

$

%

<< "Cannot create DiffuseSource Milkyway.\n"

<< likeException.what() << std::endl;

}

// Add an extragalactic diffuse component.

ConstantValue egNorm(1.);

egNorm.setParam("Value", 1., false); // fix to unity

try {

DiffuseSource extragalactic(&egNorm);

extragalactic.setName("EG component");

PowerLaw eg_pl(2.09e-3*pow(100., -2.1), -2.1, 100.);

eg_pl.setName("eg_pl");

eg_pl.setParamScale("Prefactor", 1e-7);

eg_pl.setParamTrueValue("Prefactor", 2.09e-3*pow(100., -2.1));

eg_pl.setParamBounds("Prefactor", 1e-5, 1e2);

eg_pl.setParamBounds("Index", -3.5, -1);

extragalactic.setSpectrum(&eg_pl);

addSource("EG component", &extragalactic, true);

} catch (ParameterNotFound &eObj) {

std::cerr << eObj.what() << std::endl;

throw;

} catch (LikelihoodException &likeException) {

std::cerr << "Likelihood::SourceFactory: "

<< "Cannot create DiffuseSource EG component.\n"

<< likeException.what() << std::endl;

}

}

A1 Prototype: The Likelihood Package Data Challenge Workshop, July 15–18, 2003 29'

&

$

%

To Do

• Add energy dispersion.

• Generalize Npred calculation to include zenith angle cuts and non-axisymmetric Psf’s.

• Implement more realistic response function representations.

• Analyze EGRET data.

• Implement Observation class to contain everything associated with an observation: RoiCuts,

the Event data, ScData, ExposureMap.

• Refactorings:

– Make Statistic a true Function sub-class. Have it take an Observation object as a

constructor argument.

– Coordinate the design of the FITS-related classes, Table, FitsImage, etc., with those of

other Science Tools.

– Use Strategy pattern in Optimizer class.

– Move setDir(...) method from Source to PointSource.

• Make Python extensions part of the CMT build system.

• Write proper unit tests for all classes.

