

L1 Database Contents

Seth Digel, for LAT FITS definition group: Masa Hirayama, Sandhi Bansal, Jerry Bonnell, and Guillaume Dubus HEPL/Stanford Univ. 16 July 2003

Outline

- Why have this talk?
- Contents of L1 event summaries
- What might we need to add
- What we might do without

Why have this talk?

- The L1 database is intended to contain the summary information for each event, what might be useful for high-level analysis
- The needs for the standard analysis environment are simple
 - Event number, time, energy, direction, zenith angle, classification flags
- For use outside the SAE, some additional quantities can be anticipated as being useful
 - This is kind of a slippery slope intent is not to facilitate second guessing the reconstruction, for example
- Current set is kind of a grab bag of ideas that have been floated over the last 3 years

Current contents of the L1 data

- Names and comments extracted from June 27 version by the LAT FITS group, posted by Masa Hirayama
- Highlighted in red are the must-have quantities (for DC1 and afterward)
- Quality parameters are not defined, or their application in higher-level analysis

Value	FITS Comment
ENERGY	energy of event
ENERGY_UNC	estimated 1-sigma uncertainty of energy
RA	right ascension (J2000) of event
DEC	declination (J2000) of event
DIRECTION_UNC	localization uncertainty, estimated 1-sigma radius
ZENITH_ANGLE	zenith angle of event
EARTH_AZIMUTH_ANGLE	Earth azimuth (from north to east) of event
TIME	Mission Elapsed Time
EVENT_ID	ID number of original event
OVERALL_QUALITY	overall quality parameter; overall status of event
SUBSYSTEM_FLAG	indicates subsystem(s) of conversion and tracking
MULTI_EVENT_FLAG	indicates whether multiple events reconstructed from same trigger
RECON_NUMBER	number of event within multi-event reconstructions
QUALITY_PARAMS	event quality parameters for fitted trajectory, bit flags
CONVERSION_POINT	reconstructed 3-space conversion point in instr. coords.
CONVERSION_LAYER	conversion layer in TKR, -1 means not in TKR
PRIMARY_TRAJECTORY	reconstruction trajectory; direction cosines (instr. coords) of photon
SEC1_TRAJECTORY	reconstruction trajectory; direction cosines (instr. coords) of secondary 1
SEC2_TRAJECTORY	reconstruction trajectory; direction cosines (instr. coords) of secondary 2
SEC_ENERGIES	energies of secondaries
TKR_HITS	number of hits in TKR
HITS_NOT_RECON	number of hits in TKR not used in reconstruction
ACD_TILES_HIT	bit flags for ACD tiles hit
RECON_VERSION	version of event reconstruction software
CALIB_VERSION	versions of calibration tables for the ACD, CAL, TKR

What's missing and might be needed?

- Geomagnetic coordinates, McIlwain L, B
- Particle identification (gamma ray, electron, etc.)
- Event classification
 - Bill Atwood's work is currently classifying events based on CAL (No, Low, High), conversion location (Thin, Thick), and tracking (Vertex, Single Track).
 - These basic distinctions already multiply up to 12 event classifications

Coordinates in other systems

- Moon-centered, sun-centered, for example (or face question of how to analyze a moving source – solar system-type – in general)
- *I,b*?

What might be needed? (2)

- Measured quantities and uncertainties
 - Incorporating uncertainties is certainly desirable, especially for export of the data outside of the SAE
 - However, characterizing the uncertainties short of providing the response functions is perhaps problematic – errors are not gaussian

Ground Software Workshop, July 15-18, 2003

What can we omit?

- Information about secondaries?
- Information for multi-gamma events?
 - Will these really be reconstructed?
 - Will these be common enough to worry about?
- Hits not reconstructed?
 - Are there better ways to warn that an event was particularly noisy?