GLAST/MPE/Mayer-Hasselwander/00/08/31

Data Structures representing the GLAST- PSD, EDP, SAR

(Pointspread Distribution, Energy Dispersion, Sensitive Area)

Draft 4

Data Structures proposed for storage and transfer of intermediate results (no event tuples involved) between the following processing steps:

Analysis and raw data histogram creation form Beam or Simulation runs Smoothing / Fitting/ Functional representation of the raw histograms Display of results from runs for quality assurance Construction of the ultimate 'response' datasets

Processing:

Step 1:

 create raw 'run' datasets (essentially parameters+histograms) from a series of MC or beamtest runs and store them sequentially into a disc file; this process includes application of cuts and of beam information.

Step 2:

- Read 'raw' datasets from step 1 and process its tuples
- Write the processed tuples, extending the input data, into a new disc dataset
- Write 'compressed' result tuples to a second new disc dataset (small)
 Step 3:
- Read output from step 2 for display (IDL) and for input to analysis programs
- Read output from step 2 for construction of response calibration datasets.

R&D phase:

The tuples and disc datasets are defined keeping in mind arguments concerning disc storage, software accessibility and processing sequence.

The datasets are suggested to be individually self explaining and readable in an editor (ASCII, even on the expense of some storage inefficiency).

Fixed length tuples, allowing for fixed length data records on disc, are adopted in order to avoid any possible difficulty in disc writing/reading on the various platforms, operating systems and languages.

The tuples as described below can be comfortably combined into output records for storage in disc datasets as needed. Currently the following combinations are envisaged:

The 'run' oriented basic processing (cuts, beam analysis) jobs produces one output dataset containing records which each consist of the tuples:

Record in file 'Run_Rawdat':

'run_param' + 'run_psd_binning' + 'run_psd_rawdat' + 'run_edp_rawdat'

The processing step which analyzes and processes further the PSD, EDP, DEF, SAR typically produces two output files, one file containing the complete information and one file containing the compact response representations:

Record in file 'Run_Long':

'run_param' + 'run_psd_binning' +
'run_psd_smooth' + 'run_edp_smooth' +
'run_psd_param' + 'run_edp_param'

Record in file 'Run_Short':

'run_param' + 'run_psd_param' + 'run_edp_param'

Operational requirements:

Interpretation of records according to key Sequential processing of many runs Appending run-records (continue processing) Editing (e.g. adding files using editor, eliminating records, changing values) Selective processing (adding, deleting, replacing run-records)

Content of tuples:

1. 'run_param' tuple

record key origin_string	e.g. 'Run_short' Origin designator	string string	Char I Char
cut_types	Cut combinations	string	
cut_range_low	Cut low range limit	numbers	FloatArray
cut_range_high	Cut high range limit	numbers	FloatArray
energy_mode	Mono-E or E-Range	string	Char
incid_energy	MC or Beam Energy	MeV	Int
spect_index	Spectral index	number	Float
incid_E_low	low limit measured E	MeV	Int
incid_E_high	high limit measured E	MeV	Int
incid_inclin	Incidence Inclination	deg	Float
incid_azimut	Incidence Azimut	deg	Float
incid_3vec	Incidence vector	numbers	FloatArray
incid_type	single dir. or average	string	Char
incid_pos_x	Incidence X-position	mm	Float
incid_pos_y	Incidence Y-position	mm	Float
incid_pos_z	Incidence Z-position	mm	Float
incid_flux_area	area covered by input		Float
incid_photons	number of incid photor		
detected_events	number of detected ev		
def_value	detection efficiency	number	Float
sar_value	sensitive area	number	Float

2. 'run_psd_param' tuple:

psd_hwhm	Halfwidth-Halfmaximum	deg	Float
psd_68	68% containement angl	deg	Float
psd_90	90% containment angl	deg	Float
psd_g_ncomp	number of gauss comp.	number	Int
psd_g_width	width of gauss compon.	deg	FloatArray
psd_g_amp	amplitude of compon.	prob/rad	FloatArray

3. 'run_edp_param' tuple:

S. TU	n_eup_param tu	•				
	edp_peak		c of distribution		oer (E _P /E _⊤)	Float
	edp_hwhm	Halfv	vidth-Halfmax	% of	E _{Peak}	Float
	edp_68	68%	containement	% of	E _{Peak}	Float
	edp_90	90%	containment		% of E _{Peak}	Float
	edp_g_ncomp		number of component	ts	numl	oer Int
	edp_g_offset		offset of gauss compo	on.	number	FloatArray
	edp_g_width		width of gauss compo	n.	number	FloatArray
	edp_g_ampl		amplitude of compone		prob/rad	FloatArray
4. 'ru	n_psd_binning' tu	-				
	psd_bin_numbe		number of bins		number	Int
	psd_bincent_arr		bin center locations	deg		FloatArray
	psd_binsize_arra	ay	binsizes	radia	n	FloatArray
_ /						
5. 'ru	n_psd_rawdat' tu	-				• •
	psd_overflow_c		Overflow bin events	coun		Int
	psd_counts_arra	ау	PSD distribution	even	ts/bin	IntArray
G (ru	in nod amooth' ti					
0. TU	n_psd_smooth' t	-	Overflow bin content	nroh	ability	Float
	psd_overflow_p		PSD distribution	-	ability/rad	FloatArray
	psd_prob_array			prop	ability/fau	FIDALAITAY
7 'ru	n_edp_rawdat' tu	nle [.]				
7.10	edp_overflow_c	-	Overflow bin content	coun	ts	Int
	edp_counts_arra				/ (E _м /E _⊤)bin	IntArray
		A y		Janto /	(⊏⊮⊏⊺)≎‴	ind anay
8. 'ru	n_edp_smooth' t	uple:				
	edp_overflow_p	•	Overflow bin content	prob	ability	Float
	edp_prob_array				/ (E _м /E _⊤)bin	FloatArray
	,		·		· ··· ·/	ý
9. 're	sponse_calc_cor	nsť tu	ple:			
	The following pa	rame	ters are assigned as co	onstan	ts in the pro	grams:
	psd_array_size		psd array dimension	ทเ	umber	IntConst
	edp_array_size		number of bins = arr c	lim n	umber	IntCons

edp_array_size	number of bins = arr din	n number	IntCons
edp_highend	highest (E _м /E⊤)	number	FloatConst
edp_bin_size	binsize	number	FloatConst

psd_comp_max IntConst	max n. of gauss comp.	number
edp_comp_max IntConst	max n. of gauss comp.	number