
GLAST/MPE/Mayer-Hasselwander/00/08/31

Data Structures representing the GLAST- PSD, EDP, SAR
(Pointspread Distribution, Energy Dispersion, Sensitive Area)

Draft 4

Data Structures proposed for storage and transfer of intermediate results (no
event tuples involved) between the following processing steps:

Analysis and raw data histogram creation form Beam or Simulation runs
Smoothing / Fitting/ Functional representation of the raw histograms
Display of results from runs for quality assurance
Construction of the ultimate 'response' datasets

Processing:

Step 1:
• create raw ‘run’ datasets (essentially parameters+histograms) from a series of

MC or beamtest runs and store them sequentially into a disc file; this process
includes application of cuts and of beam information.

Step 2:
• Read ‘raw’ datasets from step 1 and process its tuples
• Write the processed tuples, extending the input data, into a new disc dataset
• Write ‘compressed’ result tuples to a second new disc dataset (small)
Step 3:
• Read output from step 2 for display (IDL) and for input to analysis programs
• Read output from step 2 for construction of response calibration datasets.

R&D phase:
The tuples and disc datasets are defined keeping in mind arguments concerning
disc storage, software accessibility andprocessing sequence.
The datasets are suggested to be individually self explaining and readable in an
editor (ASCII, even on the expense of some storage inefficiency).

Fixed length tuples, allowing for fixed length data records on disc, are adopted in
order to avoid any possible difficulty in disc writing/reading on the various
platforms, operating systems and languages.

The tuples as described below can be comfortably combined into output records
for storage in disc datasets as needed. Currently the following combinations are
envisaged:

The 'run' oriented basic processing (cuts, beam analysis) jobs produces one
output dataset containing records which each consist of the tuples:

Record in file ‘Run_Rawdat’:
‘run_param’ + 'run_psd_binning’ + ‘run_psd_rawdat’ +
‘run_edp_rawdat’

The processing step which analyzes and processes further the PSD, EDP, DEF,
SAR typically produces two output files, one file containing the complete
information and one file containig the compact response representations:

Record in file ‘Run_Long’:
'run_param' + 'run_psd_binning' +
'run_psd_smooth’ + ‘run_edp_smooth’ +
‘run_psd_param’ + 'run_edp_param'

Record in file ‘Run_Short’:
‘run_param’ + ‘run_psd_param’ + 'run_edp_param’

Operational requirements:

Interpretation of records according to key
Sequential processing of many runs
Appending run-records (continue processing)
Editing (e.g. adding files using editor, eliminating records, changing values)
Selective processing (adding, deleting, replacing run-records)

Content of tuples:

1. ‘run_param’ tuple

record key e.g. 'Run_short' string Char
origin_string Origin designator string Char
cut_types Cut combinations strings CharArray
cut_range_low Cut low range limit numbers FloatArray
cut_range_high Cut high range limit numbers FloatArray
energy_mode Mono-E or E-Range string Char
incid_energy MC or Beam Energy MeV Int
spect_index Spectral index number Float
incid_E_low low limit measured E MeV Int
incid_E_high high limit measured E MeV Int
incid_inclin Incidence Inclination deg Float
incid_azimut Incidence Azimut deg Float
incid_3vec Incidence vector numbers FloatArray
incid_type single dir. or average string Char
incid_pos_x Incidence X-position mm Float
incid_pos_y Incidence Y-position mm Float
incid_pos_z Incidence Z-position mm Float
incid_flux_area area covered by input flux cm2 Float
incid_photons number of incid photons number Int
detected_events number of detected evts number Int
def_value detection efficiency number Float
sar_value sensitive area number Float

2. ‘run_psd_param’ tuple:
psd_hwhm Halfwidth-Halfmaximum deg Float
psd_68 68% containement angl deg Float
psd_90 90% containment angl deg Float
psd_g_ncomp number of gauss comp. number Int
psd_g_width width of gauss compon. deg FloatArray
psd_g_amp amplitude of compon. prob/rad FloatArray

3. ‘run_edp_param’ tuple:
edp_peak Peak of distribution number (EP/ET) Float
edp_hwhm Halfwidth-Halfmax % of EPeak Float
edp_68 68% containement % of EPeak Float
edp_90 90% containment % of EPeak Float
edp_g_ncomp number of components number Int
edp_g_offset offset of gauss compon. number FloatArray
edp_g_width width of gauss compon. number FloatArray
edp_g_ampl amplitude of components prob/rad FloatArray

4. ‘run_psd_binning’ tuple:
psd_bin_number number of bins number Int
psd_bincent_array bin center locations deg FloatArray
psd_binsize_array binsizes radian FloatArray

5. ‘run_psd_rawdat’ tuple:
psd_overflow_c Overflow bin events counts Int
psd_counts_array PSD distribution events/bin IntArray

6. ‘run_psd_smooth’ tuple:
psd_overflow_p Overflow bin content probability Float
psd_prob_array PSD distribution probability/rad FloatArray

7. ‘run_edp_rawdat’ tuple:
edp_overflow_c Overflow bin content counts Int
edp_counts_array EDP distribution counts / (EM/ET)bin IntArray

8. ‘run_edp_smooth’ tuple:
edp_overflow_p Overflow bin content probability Float
edp_prob_array EDP distribution probab / (EM/ET)bin FloatArray

9. ‘response_calc_const’ tuple:
The following parameters are assigned as constants in the programs:
psd_array_size psd array dimension number IntConst
edp_array_size number of bins = arr dim number IntCons
edp_highend highest (EM/ET) number FloatConst
edp_bin_size binsize number FloatConst

psd_comp_max max n. of gauss comp. number
IntConst
edp_comp_max max n. of gauss comp. number
IntConst

