

GLAST/GSFC/S_Digel/2000/09/06/1

Science Databases: Contents & Access

- Disclaimer: I don't know beans about databases
- Definitions
- Enumeration
- Real-world Considerations

GLAST

Definitions

Science Databases

All of the databases that have more than telemetry information in them (i.e., \geq Level 1)

Database

Specified by the kind of data and the way it will be accessed (vs. "The GLAST Database")

Enumeration of the Databases

- Event
- Photon
- Cosmic Ray
- Calibration
 - Response Function (HRM) Low-level (JRB)
- Exposure History
- Point Source Detections
- Point Sources
- Transient Alerts/GRBs

• Contents: Higher-level than Level 0

Has everything, including assignments of the hits and direction/energy estimation

Records are variable length, like EGRET 'Primary Database'

GLA

Access:

Sequential, i.e., in time order

Could be useful to be able to 'point forward' to corresponding entries in the Photon & Cosmic Ray databases

• Contents:


Information about each event identified as a *photon* that might be useful in subsequent, higher-level processingFixed record size (a real-world issue)Equivalent of the EGRET 'Summary Database' filesPoints back to the Event Database

Access:

Region of the sky, time range

Energy range, photon type (e.g., front vs. back conversion)

GI A'

• Contents:

Information about each event identified as a *cosmic ray* that might be useful in subsequent, higher-level processing
Fixed record size (a real-world issue)
Equivalent of the EGRET 'Summary Database' files
Points back to the Event Database


Access:

Arrival direction in instrument coordinates, time range Calorimeter crystal hit, Z, lack of nuclear interaction ACD tile hit, Energy



- Contents:
 - High-level response functions: PSF, A(eff), Energy resolution (HRM talk)
 - Also contains low-level information: pedestals, gains, alignments, channel masks, dead strips, thresholds,...
 - If the calibration files are updated, then need to store calibration history, so events can be processed with correct files
- Access:
 - High-level: Energy, angle(s)
 - Low-level: ? By layer, ladder, crystal, tile number
 - Both: Time or time range

Software Workshop, 6-8 September 2000, S. Digel 7

- Contents:
 - Records for each ~1 minute time step and 2°×2° grid on the sky angular distance (and azimuth) from GLAST's pointing direction
 - Also has for each time step the mode of GLAST (on/off, etc.) and livetime
 - Generation of exposure maps becomes simple multiplication by A(eff) arrays
 - Tradeoff between database size and speed of generating exposure maps: ~40 Gbyte/year:
- Access:
 - Region of the sky, time range

- Contents:
 - Point source detections from each routine analysis of sky survey data (≥1 orbit)
 - 'Detections' means: position, flux, significance, perhaps hardness, and associated uncertainties
 - Each analysis of the sky is independent; we will be looking for flaring (new) sources more sensitively than inflight
- Access:
 - Region of the sky, time

- Contents:
 - Essentially a summary of the Detection Database, derived by figuring out which detections are (probably) associated with others; not a static catalog
 - This is really how flaring sources will be recognized, routine flux histories constructed
 - Cross correlation with other astronomical catalogs (and other techniques) for IDs
- Access:
 - Region of the sky
 - (Questions about appropriate time intervals for Detection &Source Databases, whether to have 'Upper Limits' database)

GLA

- Contents:
 - A subset of the Source Catalog with alerts that have been generated
 - Potentially has >1 entry per point source
- Access:
 - Time range, region of the sky

- Reprocessing: (e.g., for improved reconstruction or modified background cuts)
 - Probably will require updating the Event Database (in place) then just regenerating the Photon and Cosmic Ray databases, because identifications and directions could change
- Access times:
 - Main databases will be big: 10⁹ events/year, 10⁸ photons/year What waiting times are acceptable?
- How can the databases be shared ("mirrored")?