<table>
<thead>
<tr>
<th>Day</th>
<th>‘Morning’ topics</th>
<th>‘Afternoon’ topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Overview & introductions</td>
<td>Dubois/Digel</td>
</tr>
<tr>
<td></td>
<td>• Science (tools) requirements</td>
<td>Digel?</td>
</tr>
<tr>
<td></td>
<td>• Processing flow</td>
<td>Williams</td>
</tr>
<tr>
<td></td>
<td>• Science Support Center</td>
<td>Band/Norris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Algorithms (possibly multi-afternoon)</td>
</tr>
<tr>
<td>2</td>
<td>• Review EGRET analysis system</td>
<td>Nolan</td>
</tr>
<tr>
<td></td>
<td>• LAT Science Tools development</td>
<td>Digel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interstellar emission model</td>
</tr>
<tr>
<td>3</td>
<td>• Data formats: FITS, Root, XDF?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>• Databases</td>
<td>Nolan, Schalk?, SSC</td>
</tr>
<tr>
<td>4</td>
<td>• Instrument Response Functions</td>
<td>Madejski?</td>
</tr>
<tr>
<td></td>
<td>• Software development infrastructure</td>
<td>Dubois</td>
</tr>
<tr>
<td></td>
<td>• PDR readiness: Science tools</td>
<td>Digel?</td>
</tr>
<tr>
<td></td>
<td>• Wrap-up</td>
<td>Dubois</td>
</tr>
</tbody>
</table>

If enough interest warrants, additional topics can be added as parallel meetings for the afternoon sessions. Potential additional topics include the user environment for the analysis system and the contents and use of the non-event data packets at Level 0.

Details: Morning sessions

Day 1
Overview & introductions
Goals for week: define scope of Science Tools and development effort, plus discussions of important early considerations
Introductions – by person or institution

Science (tools) requirements
Not ‘SRD’, which is really a misnamed instrument performance spec.
Analysis needs guide software development – some details
Analysis modules
Observation simulation
Interstellar emission model

Processing flow
Macro: S/C-GN-MOC-IOC (DPF)-SSC
Level 0-Level 0.5-Level 1-Level 2 – what are they?

Science Support Center
Who, what, and when
Staffing, funding
HEASARC

Day 2 *EGRET analysis system*
 Compare and contrast
 Source detection
 Spectral analysis

LAT Science Tools development
 Current plan – under development
 Organization by subject
 Who does what? w/ SSC – ‘core’ tools?
 Schedule – external and internal milestones
 Level 0 Ambassador

Day 3 *Data formats*
 FITS, Root, XDF (FITSML)?
 What, where, and why?

Databases
 Requirements - performance, mirror-ability, etc.
 Possible implementations – Event, exposure, source catalog,…
 Event summary v. Photon summary databases

Day 4 *Instrument response functions*
 What are they used for and how do we find them?
 With what detail do they need to be specified?
 CALDB

Science Tools development infrastructure
 Inherit from Sim/Recon
 Gaudi
 Display?
 Coding, documentation rules
 Testing

PDR Readiness
 Science tools in PDR report
 Processing flow in PDR report
 FTEs in PDR report?

Wrap-up
 What progress did we make?

Details: Afternoon sessions

Day 1 *Algorithms*
For any analysis topic, as interests dictate, e.g.:
Source detection (aka likelihood analysis) - Unbinned vs. binned, wavelet
Need ‘standalone’ spectroscopy?
GRB trigger
Methods for extended sources: user-defined models, nonparametric

analysis

Day 2 Interstellar emission model
Update of working group, status
Working group session

Day 3

Bonus Level 0 data requirements
Beyond the event packets
What kinds of packets are there?
What requirements do the Science Tools impose?
How will the information be used?

User environment options
Command line, graphical (Web?), plotting, image display