
4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathTowards a Nicer User Interface

The competition : JAS!The competition : JAS!

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.Flath

User Interface: helper macro & GUI

• Assertion:
– end users should not have to

deal with details of file
manipulation, random access
to events and some histogram
manipulation

• Create helper macro to work in
conjunction with ‘standard’
Event class
– open, reopen, rewind files
– process n events from

anywhere in the file
– clear histograms
– well-defined places to put

histogram definitions and
event loop code

• Create GUI to give even easier
access to helper member
functions

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathMyEvent Helper Macro

• Started from Root’s MakeClass
idea

• Goals
– user only touches a small part

of the MyEvent code for
histogram definitions and the
event loop and analysis

– much of the code is hidden in
the .h file

– file open, rewind, and random
access to events handled by
member functions

– some global histogram
manipulation (eg clear)

• Most standard functions held in
base class

• MyEvent member functions
– constructor - opens file
– destructor cleans up - allows

editing of macro and reload
– Init - open new file
– Rewind
– Go(n) - process n events

through user analysis
– StartAtEvent- reset starting

point for Go
– HistDefine - user histograms
– HistClr - clear all histograms

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathMyEvent.h

class MyEvent {
public :

TFile* histFile; // histogram file
TFile* f; // input file
TTree *fTree; //pointer to the analyzed TTree
Event* event;

MyEvent() {}; // default ctr
MyEvent(char* rootFileName); // ctr with root file name
~MyEvent(); // default dtr
void StartWithEvent(Int_t event); // start next Go with this event
void Init(char* rootFileName); // re-init with this root file
void HClr(); // Reset() all user histograms
void AllHistDelete(); // delete all user histograms
void HistDefine(); // define user histograms
void MakeHistList(); // make list of user histograms
void Rewind(); // reset for next Go to start at beginning of file
void Go(Int_t numEvents=100000); // loop over events

private:
Int_t m_StartEvent; // starting event
TObjArray* HistList; // list of user histograms

};

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathExample of Use

gROOT->LoadMacro("startmacro.C") // load shared libs
gROOT->LoadMacro("MyEvent.C"); // 'compile' class
MyEvent* m = new MyEvent("MyRootFile.root"); // create MyEvent object

m->Go(500); // loop over 500 events. Go contains your analysis code
m->Go() // look at remainder of file
...
m->HClr(); // clear histograms
m->Init("AnotherRootFile.root");
m->Go(50);
... and so on …
delete m; // prior to reloading macro
gROOT->LoadMacro("MyEvent.C"); // 'compile' class
… and so on …

• It’s easy to define macros to hold the gRoot directives.

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathUser Input: Histogram Definition

void MyEvent::HistDefine() {
// define histograms here

// set up histograms and root file for them here

histFile = new TFile("Histograms.root","RECREATE");

TH1F *NLOGS = new TH1F("NLOGS","Num Cal Logs", 100,0,100);
TH1F *LOGID = new TH1F("LOGID","Cal LogID", 100,0,100);

// end histogram definition __

}

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathUser Analysis - 1

void MyEvent::Go(Int_t numEvents)
{
// event loop. User analysis goes here. User must refresh pointers to
// histograms.

// This is the loop skeleton
// To read only selected branches, Insert statements like:
// fTree->SetBranchStatus("*",0); // disable all branches
// fTree->SetBranchStatus("branchname",1); // activate branchname

printf("\nNumEvents is: %i\n", numEvents);
if (fTree == 0) return;

Int_t nentries = fTree->GetEntries();
printf("\nNum Events in file is: %i\n", nentries);

Int_t curI;
Int_t nMax = TMath::Min(numEvents+m_StartEvent,nentries);

if (m_StartEvent == nentries) {
printf(" all events in file read\n");
return;

}

BoilerplateBoilerplate

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.Flath

User Analysis - 2
// refresh your histogram pointers here ______________________________

TFile *histFile = (TFile*)gROOT->GetFile("Histograms.root");

TH1F *NLOGS = (TH1F*)histFile->Get("NLOGS");
TH1F *LOGID = (TH1F*)histFile->Get("LOGID");

// end histogram pointer refresh ____________________________________

Int_t nbytes = 0, nb = 0;
for (Int_t ievent=m_StartEvent; ievent<nMax; ievent++, curI=ievent) {

if (event) event->Clean();
nb = fTree->GetEvent(ievent); nbytes += nb;
// start analysis code _______________________________________

int nCAL = event->CAL()->GetEntries();
NLOGS->Fill(nCAL);
for (int ihit=0; ihit < nCAL; ihit++) {

CalHit *hit = (CalHit*)event->CAL()->At(ihit);
LogID *log = (LogID*)hit->GetLog();
LOGID->Fill(log->ID()); }

}
// end analysis code in event loop ___________________________

m_StartEvent = curI;
}

Weak point!!

User analysis

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathGUI

Add to HADES example
Buttons for the MyEvent
member functions

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathGUI - cont’d

But only on unix!But only on unix!

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathWhat’s Next? Java GUI?

• V 2.23 now exposes GUI
drawing classes for override

• Possible to create a Java GUI
framework to solve platform
problem

• Classes such as TVirtualX,
TVirtualPad,
TVirtualHistPainter, etc. need
to be subclassed to provide
interfaces to Java.

• Then their Java Native Interface
counterpart classes must be
created.

• Once this is done, people
should be able to create a Java
GUI that substitutes a
“TJavaHistPainter” for the
global gHistPainter object, etc.
Then have a “TJavaPad” that
histograms, etc., get painted to.

• This may not be a good solution
– lots of work to duplicate full

Root functionality
– support nightmare
– may be OK in short term for

just these 3 classes

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.FlathJava GUI

All Platforms
with a JVM!
All Platforms
with a JVM!

•All GUI widgets are Java (Swing?) components.

•Widget (1) would be an overridden Java canvas
which uses JNI to talk to a corresponding ROOT
class.

•When GUI events (button clicks, etc.) occur, Java
widgets can interact with each other, including the
canvas widget.

•Other JNI classes could be added to facilitate
communication between the Java GUI and ROOT
code. For such things as creating, clearing, or
updating histograms, or other ROOT objects.

•To reproduce the Hades GUI (without
postscript support), three ROOT classes (see
next slide) would have to be overridden.
Later TVirtualPS, TVirtualTreeViewer, etc.,
could be overridden as they are needed.

(1)

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.Flath

Java
Provided by

Java

New
Classes

C++
New
Classes

Provided by

ROOT

ROOT - Java interface

TVirtualPad

TPad

TJPad

TVirtualHistPainter

THistPainter

TJHistPainter

TVirtualX

TGX11

TGJava

TGWin32

JNI

Pad HistPainter GJava

Access to member
data and functions

Swing GUI classes, etc.Events

4 Feb 2000 2nd Root Users Workshop

R.Dubois
D.Flath

Conclusion

• Users need some helper macro to do the mundane work for
them
– we have invented one that suits our needs for now: MyEvent

• GUI makes it even nicer, BUT:
– Root GUI classes are not maintained equally on NT and Unix

– investigate a Java interface for the GUI

– we will talk to the FNAL folks. From initial discussions, it appears
more daunting than we thought!

