
J2EE for GLAST

A Lightweight Service Oriented Architecture for
GLAST Data Processing

Matthew D. Langston
Stanford Linear Accelerator Center

November 23, 2004

Outline
1. Introduction to GLAST Data Processing

– Major components
– Requirements, constraints, resources,

schedule
2. Proposed Solutions

– Perl architecture (Perl scripts + CGI)
– Classic J2EE (Java + EJB containers)
– Lightweight container (Java)

3. Lightweight container solution
– Container requirements specific to GLAST
– Spring Framework
– Transparent Object Relational Database

persistence (O/R Mapping)
4. Processing Pipeline 2.0

– Status
– Existing components
– Moving data in and out of Oracle
– XML-based pipeline configuration
– Monitoring

4. Development process
– Project management
– Release Manager

• builds, unit tests, documentation
– extlib manager
– Test Driven Development
– Example

5. Dashboard: web front-end with
Macromedia products

– ColdFusion MX 6.1
– Dreamweaver MX
– FLEX

6. Conclusion

GLAST Data Processing
• Serve GLAST’s data processing and infrastructure needs for 10+ years
• Major Components

– Monitoring and Reporting
• Data quality
• Software quality (physics output, nightly builds, etc.)
• Data processing, re-processing, simulation, etc.
• Computing resources (server health, processing status, batch farm, NFS space, etc.)
• Problem notification (email, pager, etc.)
• Historical tracking of all of the above

– Processing Pipeline
• General purpose rule engine
• Automate and manage simulation, reconstruction, builds, etc.

– Data Server
• General purpose query engine and data assembler
• query physics event properties from ROOT data library and assemble into synthetic bite-sized

pieces for individual analysis
• Implicit component: Framework and development approach

– tying everything together
– common enterprise services: security, persistence, transactions, pooling, remoting and

web services, web-framework, job scheduler, email notification

Requirements

• 24x7 uptime
• 10+ year shelf life
• Support Linux and Windows Platforms

– Many (but not all) components must run on
both platforms

• Developed and maintained by small group
(of order 5 people) of disparate talents
(engineers, web developers, interested
scientists)

Proposed Solutions
Perl + CGI
– Difficult to maintain
– Limits involvement
– SLAC Security concerns
– Limited enterprise services
– Limited tool and project

support

Classic J2EE (EJB)
– Complex programming

model
– Restricted access to Java

APIs
– Monolithic
– Difficult to test

Is there something in between?

XP mantra: “the simplest solution that can possibly work”

• “J2EE without EJB”
– Part of emerging post-EJB consensus
– Driven by practical Open Source benefits (not ideological ones)

• You program in Plain Old Java Objects (POJO)
– Nothing fancy
– Nothing new to learn
– Easily testable

• Declaratively provides best parts of EJBs (and only those required by GLAST)
– Transaction management
– Security
– Remoting
– Cross cutting concerns in general

• No API
– Not a class library
– No inheritance
– Non-invasive

• No restrictions on use of 3rd party APIs
– Full access to richness of Java/J2EE open source products (JAS, Tomcat, Hibernate, etc.)
– Full access to commercial products (ColdFusion MX, GLUE)

• Light footprint
– Useful in standalone applications:
– Web container (for example, Tomcat)
– Full blown J2EE container

Lightweight Container

Spring Framework
• Mission Statement (from

http://www.springframework.org/)
– J2EE should be easier to use
– It's best to program to interfaces, rather than classes. Spring

reduces the complexity cost of using interfaces to zero.
– JavaBeans offer a great way of configuring applications.
– OO design is more important than any implementation

technology, such as J2EE.
– Checked exceptions are overused in Java. A framework

shouldn't force you to catch exceptions you're unlikely to be able
to recover from.

– Testability is essential, and a framework such as Spring should
help make your code easier to test.

Spring Framework
• From the Spring manual (180 pages)

– Bean Factory
• Java beans replace EJB

– Aspect Oriented Programming
• “Configure when you can, program when you must”
• Transactions
• Security

– Data Access
• JDBC
• Object Relational Mapping (Java Beans RDBMS)

– Transaction Management
– Security Framework

• Never touch the password
– Web Framework

• Beans as Servlets
– Java Message Service

• Distributed Asynchronous and Synchronous Events
– Remoting

• Web Services (SOAP + many others)
– Sending Email
– Job Scheduling

Spring Framework

• Configure Java beans using setters in
simple xml configuration file

Spring Framework

• The container is a Java bean factory

1. Ask Spring for a Pipeline.
2. Spring creates and returns a

Pipeline configured to talk to
Oracle.

3. Both “singleton” and “create
on demand” beans are
supported (the latter being
almost always what you
want).

1. Ask Spring for a Pipeline.
2. Spring creates and returns a

Pipeline configured to talk to
Oracle.

3. Both “singleton” and “create
on demand” beans are
supported (the latter being
almost always what you
want).

Requirement check

Do we need a bean factory?
Yes

• A bean factory removes configuration from code - all configuration stored in
configuration files

– Application objects are “wired up” using simple bean setters
– All GLAST software and all 3rd party libraries are configured identically
– No proliferation of proprietary configuration files
– Database connection settings, connection pool size, LSF queues, etc.

• Out-of-the-box implementations for
– FileSystemApplicationContext
– ClassPathApplicationContext

– XmlWebApplicationContext (web.xml for Tomcat, ColdFusion MX, etc.)

• Don’t have to use JNDI (although you can)
• Objects remain loosely coupled
• Objects are easy to test

• A bean factory removes configuration from code - all configuration stored in
configuration files

– Application objects are “wired up” using simple bean setters
– All GLAST software and all 3rd party libraries are configured identically
– No proliferation of proprietary configuration files
– Database connection settings, connection pool size, LSF queues, etc.

• Out-of-the-box implementations for
– FileSystemApplicationContext
– ClassPathApplicationContext

– XmlWebApplicationContext (web.xml for Tomcat, ColdFusion MX, etc.)

• Don’t have to use JNDI (although you can)
• Objects remain loosely coupled
• Objects are easy to test

Spring Framework
1. Task is a simple POJO Java bean
2. Property id is primary key (set by

Oracle; never set in Java)
3. Private constructor – bean can only

come from Oracle; never created in
Java.

1. Task DAO is an
interface (JDBC?
Hibernate?)

2. Spring translates all
vendor-specific
checked exceptions
into generic
unchecked
exceptions.

Requirement check

Do we need unchecked data access
exceptions?
Yes

• We currently use at least two database vendors
– Oracle
– MySQL
– More may follow? (Richard Mount’s in-memory terabase)

• Spring translates vendor-specific error codes (in JDBC SQLException) into
specific DataAccessExceptions.

– For example, TypeMismatchDataAccessException

• Spring translates exceptions from different data access strategies (for example,
JDBC, Hibernate, etc.) into a generic DataAccessException hierarchy.

• GLAST code stays decoupled from specific database vendors and specific data
access strategies

– Easy maintenance and allowing migration
– Use case: wire up a Goddard Pipeline

• We currently use at least two database vendors
– Oracle
– MySQL
– More may follow? (Richard Mount’s in-memory terabase)

• Spring translates vendor-specific error codes (in JDBC SQLException) into
specific DataAccessExceptions.

– For example, TypeMismatchDataAccessException

• Spring translates exceptions from different data access strategies (for example,
JDBC, Hibernate, etc.) into a generic DataAccessException hierarchy.

• GLAST code stays decoupled from specific database vendors and specific data
access strategies

– Easy maintenance and allowing migration
– Use case: wire up a Goddard Pipeline

Spring Framework

Arguably the best part of EJB was CMT
(Container Managed Transactions)

– Declarative
– JTA (span multiple databases)
– Remote Transaction Propagation (span

multiple JVMs)
Complete but heavy-handed

Spring provides declarative transactions to
POJOs

– Specified in configuration file (the
lightweight container way)

– or using source-level meta attributes
(ala .NET, jakarta-commons attributes
and JDK 1.5)

– Pluggable transaction strategies
– Can use JTA, but don’t have too

Common to all Transaction Managers
• Propagation behavior

– required
– supports
– mandatory
– requires new
– not supported
– never

• Isolation level
– default
– read uncommitted
– read committed
– repeatable read
– Serializable

• Timeout
• Read-only

Database TransactionsDatabase Transactions

Spring Framework

Simple patterns matching member functions
(Perl-style regxps also supported)

1. Plug in your
POJO

2. Plug in your
Transaction
strategy

3. Bam. Pipeline
now protected by
Transactions

Same as before

Instantiate transaction manager

Spring Framework
• Important: Java code did not change. Transactions were specified

declaratively in configuration file.

All database access
automatically enlisted
in Transactions

All database access
automatically enlisted
in Transactions

Requirement check
Do we need Transactions? Do we need
declarative transactions?
Yes and Yes

• Use case: Editing Pipeline configurations (using web interface)
– User think-time easily exceeds connection time boundaries.
– Data is disconnected and may have become inconsistent.
– Transactions protect data integrity.

• Use case: Pipeline XML file upload utility
– Makes tremendous number of changes to the database all at once
– many deletes, inserts and updates

• Transactions are a cross-cutting concern
– Should therefore not be done programmatically (besides, none of us are

probably qualified anyway)
– Applying transactions to POJOs in a configuration file keeps code from

changing and eases maintenance.

• Use case: Editing Pipeline configurations (using web interface)
– User think-time easily exceeds connection time boundaries.
– Data is disconnected and may have become inconsistent.
– Transactions protect data integrity.

• Use case: Pipeline XML file upload utility
– Makes tremendous number of changes to the database all at once
– many deletes, inserts and updates

• Transactions are a cross-cutting concern
– Should therefore not be done programmatically (besides, none of us are

probably qualified anyway)
– Applying transactions to POJOs in a configuration file keeps code from

changing and eases maintenance.

Database Access
• Programmatic data access

– database data Java beans
– Do something useful with beans

• run a Task
• create web report
• edit configuration
• etc.

– Java beans database

• Web-page data access
– Reports (large lists of information)

• Failed runs
• System tests
• Time histories

– Form editing (Pipeline configuration)

Database Access
Programmatic data access

JDBC
• Powerful API for working with relational databases at SQL level (similar to Perl DBI)
• Bloated and repetitive infrastructure code (transactions, exceptions, etc.)
• Manual bean get/set round trips
• Mapping not done declaratively (done programmatically)

iBATIS SQl Maps
• Simple xml “mapping file” for Java beans (declarative mapping)
• Retain full power of SQL
• Pluggable cache strategies
• Change/dirty detection and done manually (same for JDBC)

Hibernate
• Simple xml “mapping file” (declarative mapping)
• This layer over JDBC
• Doesn’t hide underlying RDBMS
• Transparent persistence of Java beans and their complex object graphs
• Disconnect and re-associate persistent objects (ala .NET’s disconnected Dataset)
• Pluggable cache strategies

JDO
• Generic object persistence
• Agnostic of underlying data store (can use RDBMS, OODBMS, etc.)
• Does not support relational concepts like joins, aggregate functions, etc.
• inability to re-associate persistent object with new transaction

EJB
• Web-page data access

– Access data from any of the above methods (JSP and ColdFusion MX)
– JSP: <sql:query …>
– ColdFusion MX: <cfquery …>

Which Data Access Strategy?
• The simplest solution that can possibly work

– For web based reports: <cfquery>
• Paging through thousands of records 20 rows at a time (like

Google)
– For simple web forms: <cfquery>
– For complex web forms: Java beans + Hibernate

• Data integrity
– Processing Pipelines: Hibernate

• object graphs
• High I/O
• Multiple connections
• Aggressive caching

• Create simple “mapping” file
– Specify which Java bean properties map to which database columns
– Java bean is never aware it is persistent

• Configuration done external to code
– Designed to support legacy databases

• Database does not have to change
– Can create schemas on demand

• Very useful for unit tests

Hibernate

Most important takeaway:
Java bean and Database are

completely decoupled –
neither have to change.

Hibernate

• What just happened?
– Use existing Oracle database

created for Perl Pipeline
– Use 3rd party Enum library with no

knowledge of Hibernate
– Map Perl-style enums to type-safe

Java enums
– Everything done declaratively

• What just happened?
– Use existing Oracle database

created for Perl Pipeline
– Use 3rd party Enum library with no

knowledge of Hibernate
– Map Perl-style enums to type-safe

Java enums
– Everything done declaratively

An example of HQL
SQL with Java bean

“dot” notation.
•HQL == “Hibernate Query Language”

•When all you want is data, not objects (which
is often)

•HQL == “Hibernate Query Language”

•When all you want is data, not objects (which
is often)

Security
• Use Spring’s declarative security approach

• Single Sign On Service
– Applications should never touch the password

• DOE requirement
– Yale’s Central Authentication Service (CAS)
– http://www.yale.edu/tp/auth/
– Simple .war file
– Accept credentials over HTTPS
– Many clients

• Java, Perl, Python, …
– Authenticate to

• Kerberos
• Simple database tables
• etc.

– Max Turi connected CAS to SLAC Kerberos (Windows only)

Declarative configuration using
“metadata”

• Microsoft .NET style
• Just to show something different
• Could have used bean factory

Pipeline 2.0
• Status

OO Pipeline Design without regard to database
Domain and DAO

Design interfaces
Implement classes
Document implementation (Javadoc)

Logic (scheduler)
Hibernate
Spring + Quartz + JMS
Dan’s special sauce

Launch and track
Hibernate entire Pipeline

Map this design onto existing Oracle 9i GLAST_DP database
Configuration

XML file upload
Web editing

Web reports
Aggregate reports
Individual reports

Pipeline 2.0 API

• Primary, “business interface”
• Ready now
• Tested
• Documented
• 50+ classes (not including unit

tests)
• Created for XML file upload and

round-trip web editing.
• Designed and implemented with

entire Pipeline in mind.

Pipeline Database Schema
21 Tables
27 relations
and growing…

Pipeline 2.0 UML

Even with complex DB relations…

Program using Java
without concern for
underlying DB

Integration TierIntegration Tier

Middle TierMiddle Tier

Mapping a Pipeline Task

Mapping a Pipeline Task

Pipeline XML File Upload

Pipeline configuration
file (XML)

Pipeline configuration
file (XML)

Reads, Inserts,
updates and
deletes covering 8
tables

Reads, Inserts,
updates and
deletes covering 8
tables

Hibernate - under the hood

Benefits of External Configuration
Yesterday, oracle-dev was down.

Simple change to Spring
configuration file and we are
back up.

Data Integrity of a Legacy
Database

Pipeline 2.0 Infrastructure
• Main site for users:

– http://glast-ground.slac.stanford.edu/

• Main site for developers:
– http://glast-ground.slac.stanford.edu/maven-projects/grits-gino/
– http://glast-ground.slac.stanford.edu/maven-projects/grits-common/

Development Process
• Release Manager (Java)

– Automated builds
– CVS integration
– Generate documentation
– Run unit tests
– Reports (unit tests, code

coverage, metrics, etc.)
– Can build “anything”

• .jar
• .war

• Dependency management
(extlibs)
– External Library Manager
– Manage and track all versions

• Maven
– Easily extensible

Development Process

ColdFusion MX and C++ External
Libraries

• Karen Heidenreich
– ColdFusion MX proof-

of-concept
– Used Dreamweaver to

create simple “portlet”

ColdFusion MX

Example query taken
from Karen’s code

What I Didn’t Cover
• ColdFusion MX

– Runs fine on Tomcat
– Other implementations (BlueDragon) toprotect against vendor

lock-in
– FLEX

• Dashboards with ColdFusion MX
– <cfquery> for Databases

• query of queries missing from JSP
– <cfinvoke> for Web Services

• Missing from JSP
• Security
• Remoting
• Email and Scheduling

Conclusion
• Java as an infrastructure platform

– Lightweight containers make this possible for small groups with disparate talents
• Make pragmatic use of technologies (not ideological ones)

– The simplest thing that can possible work
– Open Source when it makes sense
– Commercial products when they make sense (Dreamweaver, ColdFusion, etc.)

– Rich collection of high quality Open Source software
• Tomcat
• Spring
• Hibernate

– Much GLAST Pipeline “infrastructure” exists
• Domain model
• DAO implementations
• Dashboard
• Development environment

– Leverage resources
• web developers
• SLAC Java group
• ISOC

