
Or
How do we want to organize our 

ROOT files?



• As the name implies, branching structures a 
TTree into a hierarchy.

• This is an option – controlled by the split 
level specified when writing a TTree.
– 0 denotes no branching

1 denotes branching applied to the 1st level
2 denotes branching applied to the 1st and 2nd

etc up to 99 



• While not required, branching allows the 
user more control over what is read in at 
analysis time. 

Branching No Branching



root [16] TFile f("/local/data/ROOT/bfem/nsbf_r000053_20010804_072159_ivte-raw$

root [17] DigiEvent *evt = new DigiEvent()

root [18] TTree *tDigi = (TTree*)f.Get("T")

root [19] tDigi->SetBranchAddress("DigiEvent", &evt)

root [20] tDigi->SetBranchStatus("*", 0)

root [21] tDigi->SetBranchStatus("m_eventId", 1)

root [22] tDigi->GetEvent(0)

(Int_t)4

We can specify what parts of the data we want read in. 
In this case, we only read in 4 bytes, corresponding to the event id



Split level 2



McEvent

EventIdRunId McParticle
Collection

McPositionHit
Collection

McIntegratingHit
Collection

m_eventId
McParticle
Collection McPositionHit

Collection
McIntegratingHit

Collection

Mc Tree

m_runId



m_runId

Strip
Collection

PMT
Collection

Flags

Xtal Readout
Collection

m_L1T

m_eventId

Digi Tree



m_runId

Flags

Track
Collection

Recon Tree

ACD
DOCA

Xtal Cluster
Collection

m_eventId


	ROOT TTrees and Branching
	What is Branching?
	Why Branch?
	For example:
	MC TTreeViewerSplit level 2
	MC Logical Organization
	Potential Digi Branching
	Potential Recon Branching

