
GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop

Science Analysis Tools Design

Robert Schaefer – Software Lead, GSSC

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 2

Design Talk Outline

• Definition of SAE and system requirements
• Use Cases and Requirements
• Use Case Analysis and Design
• Conclusions

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 3

Software Design Architecture Delineation

• Summer 2002 - “Standard Analysis Environment” (SAE)
defined, resulting in a clear list of tasks and tools for
analyzing LAT gamma ray data.

• September 2002 - LAT SAE description document prepared
for September software review:

– http://www-
glast.slac.stanford.edu/sciencetools/reviews/sept02/report/html/review_091602.htm

– System description
– System-wide analysis use cases,
– Basic requirements for the individual tools.

• This document superseded by the Tool Requirements
document maintained by David Band:

– http://glast.gsfc.nasa.gov/ssc/dev/tools_doc/
– Joanne Bogart analyzed the Use Cases in the September review document and

concluded that the analysis tool and database definitions were consistent with
an Object Oriented design point of view - she did have some concerns about the
utilities definitions.

• http://www.slac.stanford.edu/~jrb/glast/sciTools-use.shtml

http://glast.gsfc.nasa.gov/ssc/dev/tools_doc/

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 4

System Wide Requirements

• The GSSC LAT software working group defined system
wide requirements:
– Software Development specification:

• Core tools in C++
• Use LAT development environment
• SLAC cvs repository during development.

– Software Distribution Requirements
• Support (at least) Intel Linux and Windows.
• Software must be free for the user.
• Minimize number of 3rd party packages
• No large or complicated 3rd party packages unless necessary

(from a cost-benefit analysis point of view) e.g., plplot vs. ROOT
for plotting

– NASA - HEA Requirements
• Support HEA multi-mission analysis capability effort.

– Tools will be atomistic (FTOOL - like)
– Tools will pass parameters in standard FTOOL text format (use PIL)
– Tools will be able to read and write data products in FITS format

• Must make source code available for distribution.

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 5

Hardcore Software Design

• Next need to proceed with design of software infrastructure.
– Detailed software requirements needed
– Identify common classes and interfaces
– Identify all methods for the common classes.

• Standard software design starts with Use Cases as a way to define
requirements. (Note: System use cases were supplied with SAE
definition document).

• Why Use Cases?
– Easy for anyone to write (including non-programmers)
– Way to discern “real” requirements - if you don’t use it, you can lose

it.
– Form the basis for test cases.

• January 2003 - Tool by tool Use Cases writing effort launched.
• Templates were made for Use Cases (available in LaTEX and

MSWord)
• Web site set up for access to use cases converted to HTML.

– http://glast.gsfc.nasa.gov/ssc/dev/soft_dev/LAT_use_reqs_page.html

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 6

Use Case Format (High Level)

Template URL - http://glast.gsfc.nasa.gov/ssc/dev/soft_dev/LATtoolsdev.html

Tool ID. Use Case Name (should start with a verb, e.g., Read
Event Data.)

High Level Use Case

Actors: Examples are GI or external component
Goal: What the actor is trying to achieve (a 1 line summary)
Trigger: What starts the use case. (Usually an action by the main actor, but could

be some timed event).
Description: Terse paragraph de scribing what happens. E.g., The program reads the

user specified data file. The pa ragraph should not include details like file
format (FITS data file) unless this format has been required externally.

References: list of requirements that this use case addresses based on the numbers of
the headings in the requirements document: 1.1, 2.1, etc. If the
requirement comes from a different tool or a general requirements
document then there will be a prefix for the requirement number which
indicates where the requirement comes from. E.g., U14.1.1 means that it
is requirement 1.1 form the U14 tool document. (These references will be
added when requirements are written; the next step after the high level use
cases.)

Use Case Template version: 1.2

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 7

Expanded Use Case Format (nitty gritty)

Expanded Use Case
(This is to be done after the High Level Use Cases and rudimentary requirements are
written.) I have put the expanded use case template after the high level use case because
they should be stored together (on the same page in the document we finally produce).

Preconditions: What must be true in order for the action to begin
Successful End: What happens if the use is a success (e.g., data read into program).
Failed End: What happens if the use case utterly fails and alternative courses do not

resolve the problem (e.g., program terminates.)
Priority: How important this use is to the system. (levels 1-3: 1 means critical

for proper tool operation, 3 means, just a nice to have feature)

Typical Course of Events

Actor Action System Response
1 GI specifies file name on

command line
2 read filename from CL

3 Open file.
4 read data in file

A1 When alternate courses are developed,
we can expand on the sequence here.,

A2 Alternate course causes actor to
do something

B1
Alternative Courses
A. Line #: e.g. error conditions, optional courses, like “Line 3:
File not found, prompt user for new file.”
B Line #: A separate sequence started by a different alternative course.

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 8

Use Case/Requirements Status

• Use cases and requirements have been written for many
tools:
– Use Cases for over half of identified tools have been written
– Requirements are lagging - we have them for only about 1/4 of

tools.

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 9

Use Cases by Tool Type

Use Cases and Requirements

0 2 4 6 8 10 12 14 16

Analysis

Databases

Observation
Simulations

User Interface

Utilities

Number of Tools

Requirements
Use Cases
tool number

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 10

Use Case Analysis

• Collected Use Cases were analyzed
– Data Objects identified (nouns)
– Methods identified (verbs)

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 11

Object Analysis of Use Cases
Object Tool Functions
Model Parameters Likelihood Calculate
Region of Interest Likelihood Define
SpaceCraft Data Likelihood Read

High Level Observation Simulator Read
Event Data Likelihood Read

GRB Event Binning Read Bin
GRB Rebinning Read
GRB Temporal Analysis Read
GRB Spectral Analysis Tool for Unbinned Energy Read Extract
Spectral Temporal GRB Physical Modeling Read
Exposure Calculator Read
Map Generator Read
Photon Arrival Time Converter Read
LAT Event Subselection Tool Read Extract Write Plot
High Level Observation Simulator Read Create
LAT Event Database Read Search Ingest Send Write
LAT Event Database Extractor Read Send Write

Binned Events Data GRB Event Binning Read Store
GRB Rebinning Read Store
GRB Temporal Analysis Read
GRB DRM Generator Utility Read Update

Exposure Map Likelihood Read Calculate
Exposure Calculator Read Calculate Store
Map Generator Read Calculate Store
GRB Spectral Analysis Tool for Unbinned Energy Read
Spectral Temporal GRB Physical Modeling Read

Intensity Map Map Generator Read Calculate Store
Model Parameters Likelihood Read Fit Store

Spectral Temporal GRB Physical Modeling Read Fit Store
Likelihood Surface Likelihood Calculate Plot Marginalize
Background Data GRB Event Binning Read Bin Store

GRB Rebinning Read Bin Store
GRB Temporal Analysis Read Bin Store

Time Bins GRB Event Binning Read Create Store
GRB Rebinning Read Create Store

Energy Bins GRB Event Binning Read Create Store
GRB Rebinning Read Create Store
GRB Spectral Analysis Tool for Unbinned Energy Read Create Store
Spectral Temporal GRB Physical Modeling Read Create Store

ARF GRB Rebinning Read Bin Store
GRB DRM Generator Utility Read Create Store

RMF GRB DRM Generator Utility Read Create Store
Temporal Analysis Results (???) GRB Temporal Analysis Perform Analysis Store Plot
Spectral Analysis Results (???) GRB Spectral Analysis Tool for Unbinned Energy Perform Analysis Store Plot
Flux Spectral Temporal GRB Physical Modeling Calculate Store
Observed Counts Spectral Temporal GRB Physical Modeling Calculate Store
Database Query LAT Event Database Read

Pointing, Livetime and Mode History Database Read
LAT Event Database Extractor Read

Pointing, Livetime and Mode History Pointing, Livetime and Mode History Database Search Send Ingest
Exposure Calculator Read
GRB DRM Generator Utility Read

Photon Arrival Time Photon Arrival Time Converter Convert Store
Source Position Coordinates GRB DRM Generator Utility Convert

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 12

Other Design Input

• Abstract interfaces are a good design element to keep code
separated by functionality.

• Data classes should be independent of the format of the file
they are stored in.

The bulk of defined methods for the objects in the use cases
that were written data IO. This resulted in the definition of
the GOODI library (See James Peachey’s talk)

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 13

High Level GOODI Class Diagram

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 14

Plotting Library

• Note: For the plotting, a picture = a thousand words, so Jim
Chiang created plot/data use cases.
– http://www.slac.stanford.edu/~jchiang/UI/Plotting/

• 9 different types of plots were identified for the tools
plotting interface (see J.P.’s plotting talk)

• E.g.,

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 15

Conclusions

• We have come a long way in defining and designing analysis tools
- we expect to have common libraries for data classes, file IO,
plotting IO, and parameter exchange available well before DC1.

• Time to start developing more detailed use cases and then code
for individual tools - Use cases have been a useful way to make
progress on the software infrastructure.

• Future: We need the rest of the Use Cases and requirements to:
– Finish specification and design of common tools
– Design individual tools - this implies getting into the science

algorithms as well (very little of this now). [Use Cases or Science
requirements?]

– Bring the current SAE description-like documnet into a full
requirements document

• We need this for the Ground system reviews.
• We need this to manage software development

– Define our test cases to verify our software does what it needs to.

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 16

Use Cases -Advantages and Disadvantages

• Advantages
– Design of a really useful common library is made possible by

having a systematic set of use cases and/or requirements
documents.

– Library has been created (see James Peachey’s talk to learn
more about this library).

– Provides easy way for defining software requirements
– Provides List of software test cases
– Provides at least some design documentation

• Disadvantages
– Only slightly easier to get people to write than straight

requirements documents.
– No easier to read or update than requirements docs.

GLAST Science Support CenterJuly, 2003 LAT Ground Software Workshop -- 17

Suppl. Use Cases by Development Area

14

5

2

6

10

Number of
Tools

710Utilities

01 (unofficial)User Interface

01Observation
Simulations

22Databases

16Analysis

Tools with
Requirements

Tools with
Use Cases

Development
Area

	Science Analysis Tools Design
	Design Talk Outline
	Software Design Architecture Delineation
	System Wide Requirements
	Hardcore Software Design
	Use Case Format (High Level)
	Expanded Use Case Format (nitty gritty)
	Use Case/Requirements Status
	Use Cases by Tool Type
	Use Case Analysis
	Object Analysis of Use Cases
	Other Design Input
	High Level GOODI Class Diagram
	Plotting Library
	Conclusions
	Use Cases -Advantages and Disadvantages
	Suppl. Use Cases by Development Area

