
Daniel Flath & Alex Schlessinger Data Processing Pipeline 1/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

Level 1 Processing PipelineLevel 1 Processing Pipeline

Daniel Flath

For

Daniel Flath (Stanford),
Alex Schlessinger (SLAC)



Daniel Flath & Alex Schlessinger Data Processing Pipeline 2/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

OverviewOverview

• Requirements
– Processing
– Cataloguing

• How it works
• OPUS

– Introduction & Desirable features
– LAT-Specific Additions

• Implementation Status
– OPUS
– Add-Ons

• Goals
– DC1
– EM



Daniel Flath & Alex Schlessinger Data Processing Pipeline 3/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

RequirementsRequirements

• Processing
– Conversion of L0 (near-raw) to L1 data upon receipt from 

MOC
• XFer of HSK data to OF
• Reconstruction & Digitization
• Must be complete before next downlink
• XFer of diagnostics to OF

– Reprocessing of L1 data as needed
– Production of simulated data

• Data Cataloguing
– Classification and storage of L1 data after processing

• Summary information on each dataset
– Tracking status and schedule of reprocessing



Daniel Flath & Alex Schlessinger Data Processing Pipeline 4/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

How it WorksHow it Works

• Pushes data through a sequence of processing steps

• Monitors status of a dataset as it proceeds through processing

• Provides notification upon failure of a processing stage

• Catalogues the result of processing for each dataset



Daniel Flath & Alex Schlessinger Data Processing Pipeline 5/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

OPUS OPUS –– Introduction & FeaturesIntroduction & Features

• Developed by AURA for the Space Telescope
• In use by several NASA experiments
• Does almost everything we need

– Will run any *program* that can be “wrapped” by a shell 
script

– Provides hooks for trapping processing errors
– Distributes processing over a network of machines
– Will run multiple processing sequences simultaneously

• Supports Extension of Functionality
– Provides a C++ API to develop “OPUS-Aware” applications 

that have access to OPUS state information
• Displays live processing status (see next slide)

– User can modify or override individual jobs & statuses



Daniel Flath & Alex Schlessinger Data Processing Pipeline 6/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

OPUS in Action (PMG)OPUS in Action (PMG)

(Image Courtesy of OPUS manual)



Daniel Flath & Alex Schlessinger Data Processing Pipeline 7/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

OPUS in Action (OMG)OPUS in Action (OMG)

(Image Courtesy of OPUS manual)



Daniel Flath & Alex Schlessinger Data Processing Pipeline 8/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

LATLAT--Specific AdditionsSpecific Additions

• Support for the SLAC LSF Batch Processing Farm (Alex)
– OPUS supports processing over multiple nodes using 

R/SSH
– Alex is developing an interface layer that will extend this to 

the Batch Farm at SLAC

• Support for the ORACLE processing DB
– OPUS saves log files containing the status of each 

processing stage
– Dan is developing a set of scripts to wrap the processing 

database
– At completion of processing for a particular dataset, these 

will catalog the status, location, and a summary of the 
dataset



Daniel Flath & Alex Schlessinger Data Processing Pipeline 9/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

Implementation StatusImplementation Status

• OPUS
– Sample pipeline has been developed

• Runs GLEAM (Sim/Digi/Recon)
• Runs ROOT macros to verify the output

– Support garnered from development team

• Database & LSF
– Database routines about 50% complete
– LSF layer is researched and ready to be developed
– Awaiting OPUS source code & documentation

• Upon receipt, can develop the LSF layer and the 
Cataloguing program (that will use the DB routines)



Daniel Flath & Alex Schlessinger Data Processing Pipeline 10/10

GLAST LAT Project Software Workshop 15-18 July, SLAC

GOALSGOALS

• DC1
– Stress-test Pipeline components (OPUS, LSF-Layer, DB-

Layer) by running GLEAM on many machines
• Full implementation contingent on getting source code 

from STSC
• Kludge implementation possible failing this in short 

order

• EM
– Test a toy version of what will be the L1P using data as it 

comes off the instrument


	Level 1 Processing Pipeline
	Overview
	Requirements
	How it Works
	OPUS – Introduction & Features
	OPUS in Action (PMG)
	OPUS in Action (OMG)
	LAT-Specific Additions
	Implementation Status
	GOALS

