

Trigger and SVAC Tests During LAT integration

Su Dong, Eduardo do Couto e Silva and Pat Hascall December 7, 2004

This Presentation

- Part 1
 - Overview of trigger tests
 - There are 4 tests
 - » FLE scan with muons was added as part of those

- Part 2
 - Overview of SVAC tests
 - There are 17 tests
 - » Merged nomenclature with Gary's table
 - » Addresses ACD tests (for completeness), no need to talk about them today
- What do we expect to achieve today?
 - Agreement on the definition of these tests
 - Define action items for issues we may raise

To be Addressed Today

- We do not know if a trigger primitive fired within the trigger window if the TEM diagnostics are disabled
 - In the GEM summary word we only know which tower issue the trigger primitives, but do not know which layer (end) issued the trigger primitives.
- Unbiased sample of triggers only exist with muon telescope
 - we can not analyze data with multiple trigger lines enabled (needed for efficiency studies)
- Can not test CAL FHE with muon spectrum
 - not enough high energy events
- Testing CAL FLE with muons requires lowering the on-orbit settings
 - Need to determine optimal operation point
 - beware of retriggering

Trigger Tests (1)

- 1.0 GEM Timing Alignment
 - Purpose
 - To verify the timing alignment and jitter for each GEM trigger input
 - Duration
 - 4 hours (EXT AND CAL_LO)
 - 4 hours (EXT AND TKR)
 - Configuration
 - muon data taking configuration.
 - Trigger on EXT trigger (muon telescope) AND TKR or CAL (only one trigger input under test each time)

- Procedure

- Scan TREQ delay for the trigger test (across the allowable range)
- Take 5000 events for each of the 16 allowed points.
- Compute the coincidence of external trigger and trigger under test at each step
- Compute center time and jitter.

Trigger Tests (2)

- 2.0 Subsystem TACK Delay Test
 - Purpose
 - To determines the optimal trigger output (TACK) delay for each subsystem.
 - Duration
 - 4 hours
 - Configuration
 - muon data taking configuration.
 - Trigger on EXT trigger ONLY (muon telescope)
 - Procedure
 - Scan TACK delays for the TKR and CAL over the applicable range simultaneously
 - Record 5000 events for each of the 8 steps
 - Determined the optimal TACK delay will by analysis
 - » Use pulse heights for the CAL and hit multiplicity for the TKR

Trigger Tests (3)

- 3.0 FLE Muon Scan
 - Purpose
 - To determines the optimal setting for the FLE for some of the muon data taking.
 - Duration
 - 12 hours
 - Configuration
 - muon data taking configuration.
 - Trigger on EXT (muon telescope), TKR and CAL_LO trigger
 - Procedure
 - Use procedure from CAL as baseline LAT-MD-04187-01
 - Alternative proposal
 - » Scan FLE DAC setting for the CAL over the applicable range
 - » Record 5000 (TBR) EXT triggered events for each of the 3 steps (TBR)
 - » Determined the optimal FLE by analysis

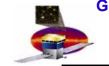
Trigger Tests (4)

- 4.0 Trigger efficiency
 - Purpose
 - To determine the trigger efficiency
 - Duration
 - 4 hours
 - Configuration
 - muon data taking configuration.
 - Can be combined with the SVAC test B4
 - Trigger on EXT (muon telescope), TKR and CAL_LO trigger
 - Procedure
 - Analysis offline

Trigger Primitives

- Available when TEM diagnostics are enabled
 - Allows one to know which layer (end) issued a trigger request
- The GEM summary words tell which trigger occurred in a particular tower/ACD
 - TKR, CAL_LO, CAL_HI, CNO, ROI, EXT, Periodic, Solicited
- Default on orbit
 - TEM diagnostics OFF
- Default for SVAC tests for full LAT
 - TEM diagnostics OFF
- Default for SVAC tests of partially populated LAT and tests outside flight grid and trigger tests
 - TEM diagnostics ON

Trigger window – current implementation


- Trigger window is of fixed time
 - Configurable (250 ~ 1600 ns)
 - the first trigger type to appear can open the trigger window
 - If the window open mask register for that type was enabled
- How do I know a trigger primitive fired?
 - After the window closes it will appear in the GEM condition summary word, from which the L1 trigger is formed, only if
 - a trigger type signal was HIGH during the time the window was open
- What if the *window open mask* register for a given type was disabled but the signal was HIGH?
 - It will be in the GEM condition summary word
 - Provided some other trigger will open the window at a compatible time!

Muon Data Taking for Trigger Tests

- Single towers outside/inside the flight grid and LAT
 - Main Register settings
 - CAL Readout range: ONE or FOUR?
 - CAL High energy muon gain: OFF or ON?
 - Zero suppression: ON
 - TEM trigger diagnostic data: ON

SVAC Tests - Summary

- Before SVAC tests
 - Integrated tower is timed in and nominal settings are known
- SVAC tests
- SVAC B1-B3 Flight configuration for LAT
- SVAC B4-B5 Main configuration for LAT Calibrations
- SVAC B6-B7 FLE trigger on muons for trigger tests
- SVAC B8-B9 Main configuration for partially populated LAT
- SVAC B10 No zero suppression for partially populated LAT
- SVAC B11 No zero suppression for LAT
- SVAC B12 Main configuration for LAT VDG tests
- SVAC B13 Main VDG configuration for partially populated LAT
- SVAC B14 ACD Veto functionality
- SVAC B15-B17 ACD Calibrations
- Trade-off between fast throughput in data processing and convenience for users suggested that the
 - SVAC Data Taking scripts should be limited to 100-200 MB runs
 - Implies in ~30 min runs for 1 tower

SVAC tests – Charge Injection

 To support the SVAC offline calibrations with muons the following charge injection tests will be performed just prior to the muon data taking

– TKR

- TE701 Threshold Dispersion
- TE601 Threshold Calibrations
- TE602 TOR conversion parameter calibrations
- CAL
 - Name? FLE/FHE characterization charge injection
 - To "calibrate out the cross talk" effect from the FLE (using SAS calibGenCAL v3), the following trigger test is needed
 - Name? FLE characterization with muons

SE Test Planning Dec 7, 2004

SVAC Tests – B1 to B3

- SVAC B1-B3 (Flight configuration for LAT)
 - Purpose
 - Record cosmic ray triggers to compare offline calibrations and performance with results from default ground muon configuration (B2).
 - This is the default flight configuration for the LAT
 - Test/Duration
 - B1: Single tower outside the flight grid (Towers A and B only): 2 hours
 - B1: Each single tower once it is installed inside the flight grid: 4 hours
 - B1: LAT in vertical orientation: 5 x 24 hours = 120 hours
 - B2: LAT in horizontal orientation (prior to VDG tests): 3 hours
 - B3: LAT in horizontal orientation: 5 x 24 hours = 120 hours
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: ONE
 - » High energy muon gain: OFF
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on logical OR
 - » EXT trigger (muon telescope) if accessible
 - » TKR set to 1/4 MIP
 - » CAL_LO set to 100 MeV
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

- SVAC B4-B5 (Main configuration for LAT Calibrations)
 - Purpose
 - Record cosmic ray triggers to produce offline calibrations, to evaluate performance and compare with MC simulations.
 - This is the default and official configuration for LAT calibrations and includes measurement of response of both CAL PIN diodes.
 - Test/Duration
 - B4: LAT in vertical orientation: 6 x 24 hours = 144 hours
 - **B5:** LAT in horizontal orientation for baseline prior to Environmental Tests= 16 hours
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: FOUR
 - » High energy muon gain: ON
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on logical OR
 - » EXT trigger (muon telescope) if accessible
 - » TKR set to 1/4 MIP
 - » CAL_LO set to 100 MeV
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

- SVAC B6 (FLE trigger on muons to support trigger tests)
 - Purpose
 - Record cosmic ray triggers to verify performance
 - Trigger efficiency tests for trigger group
 - This is the low energy FLE configuration for the LAT
 - Duration
 - Single tower outside the flight grid vertical orientation (tower A and B only): **1 hour**
 - Single tower inside the flight grid vertical orientation (TBR depends on first two tower tests)
 - LAT in vertical orientation: 8 hours (TBR depends on first two tower tests)
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: ONE
 - » High energy muon gain: OFF
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: ON
 - Trigger on logical OR
 - » EXT trigger (muon telescope) if accessible
 - » TKR set to ¼ MIP
 - » CAL_LO set to 6 MeV (TBD by trigger tests)
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

- SVAC B7 (FLE trigger on muons to support trigger tests)
 - Purpose
 - Record cosmic ray triggers with the low energy FLE configuration with TEM diagnostics disabled, to confirm that we only need configuration B6 for the LAT

– Duration

- Single tower outside the flight grid vertical orientation (tower A and B only): 1 hour
- Single tower inside the flight grid (TBR depends on first two tower tests)

Configuration

- CAL
 - » Auto range: ON
 - » Readout range: ONE
 - » High energy muon gain: OFF
- Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
- TEM trigger diagnostics: OFF
- Trigger on logical OR
 - » EXT trigger (muon telescope) if accessible
 - » TKR set to 1/4 MIP
 - » CAL_LO set to 6 MeV (TBD by trigger tests)
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

SE Test Planning Dec 7, 2004

- SVAC B8-B9 (Main configuration for partially populated LAT)
 - Purpose
 - Record cosmic ray triggers to produce offline calibrations, to evaluate performance and compare with MC simulations with TEM diagnostics enabled
 - This is the default and official configuration for partially populated LAT calibrations and includes measurement of response of both CAL PIN diodes.
 - Duration
 - **B8:** Single tower outside grid vertical orientation (Towers A and B only): 2 hours
 - **B8:** Partially populated LAT inside flight grid vertical orientation: 15 hours
 - B9: Two-Towers (A,B) inside grid in horizontal orientation (prior to VDG tests): 3 hours
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: FOUR
 - » High energy muon gain: ON
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: ON
 - Trigger on logical OR
 - » EXT trigger (muon telescope) if accessible
 - » TKR set to ¼ MIP
 - » CAL_LO set to 100 MeV
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

- SVAC B10 (No zero suppression for partially populated LAT)
 - Purpose
 - Record cosmic ray triggers to produce offline calibrations that require no zero suppression with the TEM diagnostics enabled
 - Duration
 - Single tower outside flight grid in vertical orientation: 1 hour
 - Partially populated LAT and/or Single tower inside flight grid in vertical orientation: 1 hour
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: FOUR
 - » High energy muon gain: ON
 - Zero suppression OFF
 - TEM trigger diagnostics: ON
 - Trigger on logical OR
 - » EXT trigger (muon telescope) if accessible
 - » TKR set to 1/4 MIP
 - » CAL_LO set to 100 MeV
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

- SVAC B11 (No zero suppression for LAT)
 - Purpose
 - Record cosmic ray triggers to produce offline calibrations that require no zero suppression with the TEM diagnostics disabled
 - Duration
 - LAT in vertical orientation: 1 x 16 hours = 16 hours
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: FOUR
 - » High energy muon gain: ON
 - Zero suppression OFF
 - TEM trigger diagnostics: OFF
 - Trigger on logical OR
 - » TKR set to ¼ MIP
 - » CAL_LO set to 100 MeV
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

- SVAC B12 (Main configuration for LAT VDG tests)
 - Purpose
 - Record VDG photons to measure performance
 - Duration
 - LAT in horizontal orientation: 16 hours
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: ONE
 - » High energy muon gain: OFF
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on
 - » TKR set to 1/4 MIP

- SVAC B13 (Main VDG configuration for partially populated LAT)
 - Purpose
 - Record photons to evaluate performance
 - Duration
 - Tower A outside grid in horizontal orientation: 16 hour
 - Tower A and B inside grid in horizontal orientation: 16 hours
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: FOUR
 - » High energy muon gain: ON
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: ON
 - Trigger on
 - » TKR set to ¼ MIP

- SVAC B14 ACD (veto functionality)
 - Purpose
 - Record cosmics for veto functionality
 - Duration
 - LAT in vertical orientation: 1-8 hours (TBR)
 - Configuration
 - CAL
 - » Auto range: ON
 - » Readout range: ONE
 - » High energy muon gain: OFF
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on logical OR
 - » EXT trigger (muon telescope) if accessible
 - » TKR set to ¼ MIP
 - » CAL_LO set to 100 MeV
 - » CAL_HI set to 1 GeV
 - » ACD_HLD set to 1 MIP

SE Test Planning Dec 7, 2004

- SVAC B15 ACD Calibrations
 - Purpose
 - Record cosmics for ROI 1
 - Duration
 - LAT in vertical orientation: 6 hours
 - Configuration (as in flight for TKR and CAL)
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on ACD
 - » ACD_veto set to 0.1 MIP
 - » ACD_HLD set to 1 MIP

- SVAC B16 ACD Calibrations
 - Purpose
 - Record cosmics for RO2 2
 - Duration
 - LAT in vertical orientation: 6 hours
 - Configuration (as in flight for TKR and CAL)
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on ACD
 - » ACD_veto set to 0.1 MIP
 - » ACD_HLD set to 1 MIP

- SVAC B17 ACD Calibrations
 - Purpose
 - Record cosmics for ROI 3
 - Duration
 - LAT in vertical orientation: 6 hours
 - Configuration (as in flight for TKR and CAL)
 - Zero suppression ON
 - » CAL LAC 1 MeV
 - » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on ACD
 - » ACD_veto set to 0.1 MIP
 - » ACD_HLD set to 1 MIP

Yet To be addressed ...

- External trigger efficiency ~ 1 to 4 Hz
 - This needs to be understood before data taking time is finalized
- Testing STRETCH_OR in the GTRC needs to be added to the TKR tests
 - This needs to be understood before data taking time is finalized
- Redundancy between sides A and B of ELX boxes needs to be added
 - This needs to be understood before data taking time is finalized

Trigger window – proposal

- The trigger primitive information should always flow into the GEM condition summary word
 - irrespective of the status of the window open register
- Benefits
 - Add flexibility to the system for on-orbit operations
 - Case 1
 - Disallow CAL_HI to open the window (in case it has a significant trigger time slew which is energy dependent)
 - CAL_HI APPEARS in the GEM event summary word as long as TKR or CAL_LO opens the window
 - Case 2
 - Disallow CAL_LO to open the window (in case retriggering is an issue)
 - CAL_LO APPEARS in the GEM event summary word as long as TKR opens the window
 - Rely on TKR for low energy spectrum
 - » Not good situation and need careful study of systematics