No.	Test Case	Test Case Description	Parameter(s) Measured/Calculated	Function(s) Validated	Notes
1	CALU_INIT	Calorimeter	a) TEM Measured Voltage		Measured parameters and
		Initialization	b) TEM Current Consumption		functions are a best guess.
			Step Change		
2	CALF_EXR_P01	Exercise Registers		a) AFEE Communications	Grove recommends replacing
				b) GCRC Communications	this with system-wide register
				c) GCFE Communications	exerciser.
				d) GCCC Communications	
				e) Readback logic	
3	CALF_PEDESTALS_CI	Compute Pedestals	a) HEX1 Pedestals	a) Solicited Triggers	Eric Grove recommends
			b) HEX8 Pedestals	b) GCFE Electronic Gain	reducing the number of gain
			c) LEX1 Pedestals	Adjustment	settings to shorten this test.
			d) LEX8 Pedestals	c) Readout range select	
4	CALF_MU_OPTICAL	Muon Optical Response		a) Trigger (TREQ/TACK)	1) Trend data is collected
				functionality	during this test to verify CDE
				b) Log End Energy Measure	relative gain has not changed
				c) FLE Threshold Adjust	by more than $+/-10\%$.
				d) FHE Threshold Adjust	2) Five minutes of mouns is
				e) Log Hit Map	sufficient for this test. All
					towers can be run in parallel.
					Further, this could be run in
					parallel with TKR muon tests.
5	CALF_MU_TREND	Muon Optical Response	a) LE-/LE+ Diode Ratio		1) Script analyzes data
		Trend	b) LE+/HE+ Diode Ratio		collected by item 4 only.
			c) LE-/HE- Diode Ratio		2) Eric Grove recommends
			d) Dead Range Identification		analysis be done online.

No.	Test Case	Test Case Description	Parameter(s) Measured/Calculated	Function(s) Validated	Notes
6	CALF_SHP_P01	Calibrate Slow Shaper	a) LE Slow Shaping Amp Output	a) Charge Injection DAC set	Eric Grove recommends
		Delay, Optimal Charge	b) HE Slow Shaping Amp Output	b) Charge Injection	reducing the number of TACK
		Injection TACK Delay	c) Charge Injection TACK Delay	c) TACK adjust	delays used, to shorten this test.
7	CALF_GAIN_P01	Gain Calibration with	a) HEX1 relative Gain	a) GCFE Electronic Gain	Eric Grove recommends
		Charge Injection	b) HEX8 relative Gain	Adjustment	reducing the number of gain
			c) LEX1 relative Gain	b) Charge Injection DAC set	settings, to shorten this test.
			d) LEX8 relative Gain	c) Charge Injection	
8	CALU_COLLECT_CI_	4-range Charge Injection	a) 4-range Energy Measurement	a) Log End Energy Measure	
	SINGLEX16	Collection	(EM) Linearity	d) Charge Injection DAC set	
				e) Charge Injection	
				f) Charge Injection enable	
9	CALF_ADC_P02	Front End Non-Linearity	a) 4-range Mean Pulse Amplitude		Script analyzes data collected
		and Noise	(MPA)		by item 8.
			b) 4-range MPA Max Deviation		
			c) 4-range RMS Noise		
10	CALU_COLLECT_CI	Charge Injection		a) Trigger functionality	Grove recommends deleting
		Collection		b) Log Hit Map	this acquisition for LAT level.
				c) Log End Energy Measure	This is a collect-only step.
				d) Charge Injection DAC set	
				e) Charge Injection	
				f) CI masks (all enab)	
11	CALF_ADC_P05	Track and Hold Droop	a) GCFE Track and Hold Droop	a) Trigger functionality	Eric Grove recommends
				b) Log Hit Map	deleting this test for LAT
				c) Log End Energy Measure	Level. This script analyzes
				d) Charge Injection DAC set	data from previous step.
				e) Charge Injection	
				f) Calibration masks	

No.	Test Case	Test Case Description	Parameter(s) Measured/Calculated	Function(s) Validated	Notes
12	CALF_TRG_P01	CAL-Lo/CAL-Hi		a) CAL-Lo Trigger mask	
		Trigger Enable/Disable		b) CAL-Hi Trigger mask	
				c) Low Rate Science counters	
				d) Charge Injection DAC set	
				e) Charge Injection	
				f) CI masks	
13	CALF_TRG_P03	FLE/FHE DAC Trigger	a) FLE Trigger Threshold	a) FLE threshold	Eric Grove recommends
		Threshold	b) FHE Trigger Threshold	b) FHE threshold	greatly reducing this test by
				c) Charge Injection DAC set	measuring thresholds at only 3
				d) Charge Injection	settings.
14	CALF_TRG_P04	FLE/FHE Trigger Time	a) FLE Trigger Peaking Time	a) Low Rate Science counters	Eric Grove recommends
			b) FHE Trigger Peaking Time	b) FLE, FHE peaking time	greatly reducing this test by
				d) Charge Injection DAC set	using only a few settings or
				e) Charge Injection	deleting the test all together.
15	CALF_SUPP_P01	LAC DAC Trigger	a) Log Accept Threshold	a) LAC DAC Threshold set	Eric Grove recommends
		Threshold		b) Log Hit Map	greatly reducing this test by
				d) Charge Injection DAC set	using only a few settings for
				e) Charge Injection	each threshold measurement.
16	CALF_SUPP_P02	Lowest Effect LAC	a) Log Accept DAC Lowest	a) LAC DAC Threshold set	Eric Grove recommends
		DAC Setting	Effective Threshold	b) Log Hit Map	deleting this test for LAT
			b) Noisy Channel Identification	c) Log End Energy Measure	Level.
				d) Charge Injection DAC set	
				e) Charge Injection	

No.	Test Case	Test Case Description	Parameter(s) Measured/Calculated	Function(s) Validated	Notes
17	CALF_RNG_P01	ULD DAC Trigger	a) Upper Level Discriminator	a) ULD DAC Threshold set	Eric Grove recommends
		Threshold	(ULD) DAC Threshold	b) Log Hit Map	greatly reducing this test by
				c) Log End Energy Measure	using only a few settings for
				d) Charge Injection DAC set	each threshold measurement.
				e) Charge Injection	
				f) Auto range selection	
18	CALF_DTM_P01	Deadtime Measurement	a) Average Deadtime	a) Log Hit Map	Eric Grove recommends
				b) Log End Energy Measure	greatly reducing this test by
				c) Low Rate Science counters	doing only a single range zero
				d) Charge Injection DAC set	suppressed readout. Should
				e) Charge Injection	be replaced by system-level
				f) Solicited Trigger	test.
19	CALF_OVR_P01	Overload Recovery	a) Recovery time	a) Log Hit Map	Eric Grove recommends
				b) Log End Energy Measure	deleting this test for LAT
				c) Low Rate Science counters	Level.
				d) Charge Injection DAC set	
				e) Charge Injection	
				f) Solicited Trigger	