GLAST Large Area Telescope: Integration & Test

Elliott Bloom
SU-SLAC
I&T Manager

elliott@slac.stanford.edu
650-926-2469
Organization of I&T – Overview

Integration Facilities Configuration and Test (IFCT)

Mechanical Ground Support Equipment (MGSE)

Electrical Ground Support Equipment (EGSE) / Online Software

Particle Test

Science Verification Analysis and Calibration (SVAC)

Integration, Test, and Calibration

Management
Scope of I&T Presentation

- Preparation for LAT integration
 - Integration, Facilities, Configuration and Test (IFCT)
 - Electrical Ground Support Equipment (EGSE)/Online
 - Mechanical Ground Support Equipment (MGSE)
 - Particle Test
 - Science Verification, Analysis, and Calibration (SVAC)
 - Management
 - Peer Reviews of I&T departments 6/14/04 - 6/18/04
 - Integration Readiness Review – 7/8/04
- Installation of one tower and testing begins – 8/13/04
- Installation of two towers and testing begins – 9/04
- Two Tower CPT begins – 10/04
- Two Tower CPT complete – 11/04
Integration and Test Sequence Through Two Towers (LAT-MD-00676)

1. Receive Grid
 - Integrate Grid onto Rotation Stand
 - Grid Optical Survey

2. Receive Calorimeter, TEM/TEM PS Flight Units A
 - Install in Metrology Bay for Shimming & Assembly
 - Test CAL A & TEM/TEM PS A

3. Receive Tracker Flight Unit A
 - Install tower in Single Bay
 - Test Single Bay Tower
 - De-Install Tower from EM single bay

4. Receive Calorimeter, TEM/TEM PS Flight Units B
 - Install in Metrology Bay for Shimming & Assembly
 - Test CAL B & TEM/TEM PS B

5. Receive Tracker Flight Unit B
 - Install tower in Single Bay
 - Test Single Bay Tower
 - De-Install Tower from EM single bay

6. Integrate Tracker A into Grid
7. Integrate Cal/TEM/TE M-PS A into Grid
8. Single Tower Test in Grid
9. Optical Survey
10. Integrate Tracker B into Grid
11. Integrate Cal/TEM/TE M-PS B into Grid
12. Single Tower Test in Grid
13. Two Tower CPT
I&T Overview to Start of Integration

- Requirements LAT-MD-02730 6/10/04 *
- I&T Plan LAT-MD-01376 5/1/04
- Survey Plan 5/1/04 draft 5/31/04 final

Integration Procedures
Mechanical and Electrical 6/18/04

Training & Procedure Verification 6/18/04

Electronics Test-Bed 5/04

I&T Mockup 4/1/04

LATTE v.3.0 4/1/04
EGSE Hwr Deliveries 6/1/04

I&T Functional Test Scripts 6/1/04

Training & Script Verification 6/1/04 – 7/1/04

Integration Readiness Review 7/8/04

Bldg 33 Cert 6/18/04
Particle Test Equipment 6/18/04

Receive Flight Hardware Start Integration

- LATTE v.3.n V & V 5/8/04 – 7/8/04

- LAT-MD-02730 6/10/04 *

- Final though two tower CPT, releases to support integration procedure development
Recent Accomplishments

- MGSE Review – February 5th and February 24th.
- Held an Integration Kick-off Meeting – March 9th.
- Assembly plan under review for release (Design Engineering document) – March 12th.
- Hired 6 of 10 open I&T positions as of March 25th.
- Training Mockup ready for use March 31st.
- Initial Online software for integration of LAT, LATTE v.3.0 released – April 1st.
Integration, Facilities, Configuration, and Test (IFCT) Flow

Procedure Writing
(March – June)

Mockup Preparation
(March)

Mockup Training
(April – June)

Facility Preparation
(March – May)

Facility Training
(May – June)

Integration Readiness Review
7/8/04

Testbed Preparation
(March – April)

Testbed Training
(May – June)
Integration, Facilities, Configuration, and Test (IFCT) - Procedures for Single and Two Towers

- Single bay procedures (12 total)
 - 9 procedures partially or fully tested in EM1 test series
 - 3 procedures never exercised yet: Tracker installation, Optical survey, TEM/PSU shimming
 - Includes critical operations and facility procedures.
 - 7 complete by 4/9/04, 3 complete by 4/19/04, 1 by 5/19/04, and 1 by 6/18/04.

- Two-bay procedures (6 total)
 - Top concern: GASU/PDU test procedures; will be sending IFCT personnel to ELX test lab to develop and exercise procedures.
 - 3 complete by 4/9/04 and 3 by 6/18/04 including two tower comprehensive performance test.

- Related MGSE procedures (13 total)
 - Use and proof test procedures ready by the IRR.
Example of monitoring system data:

- Cleanroom typically operating within limits 99.7% of time
- Hardware bag with nitrogen purge covered remaining 0.3% of time
IFCT - Facility Project Schedules

- Cleanroom air conditioning hot water back-up boiler - new issue as of 3/25 (SLAC SEM investigating)
- Network Firewall - ECD 3/31
- Nitrogen purge line certification - ECD 3/31
- Cleanroom Monitoring Automated Data Archival System (SCS) - ECD 4/30
- Cleanroom air conditioning air intake duct stack - ECD 4/30
- ACD Test Area - ECD 5/31
- ELX Thermal Chamber Installation - ECD 5/31
- ELX T-Vac Installation - ECD 5/31
- Building 33 Back-Up Power Generators - ECD 5/31 (Proposed - awaiting quote/Project approval)
Description of parts:
- Rotation stand supporting plate spanning full-width of LAT
- EM single bay can fasten to central bay
- CAL baseplate external features
- Shear plates
- Cable trays
- Population of cables, electronics boxes for bays 8-15 (50% of LAT)

Status
- All major parts in hand or in manufacturing
- Ready for training 31-Mar-04
Planned Operations Meetings

• Ongoing weekly I&T meeting, Thursdays 1:30 PM – 3 PM (telecon).
• During integration
 – Daily 8 AM meeting in Bldg 33 to define work for the day.
 • Attended by all technicians on day shift that day.
 • Led by electrical and mechanical floor engineers.
 – Daily 4 PM meeting in Bldg 33 to review progress of the day shift and define work for the swing shift.
 • Attended by all technicians on day and swing shift that day.
 • Led and organized by IFCT department manager.
 • Electrical and Mechanical floor engineers define work for the swing shift.
 • Short technical presentation relevant to the days work will be made.
Mechanical Ground Support Equipment (MGSE) - Flow

- **Formal Stress Analysis**
 - 2/6/04 – 4/9/04

- **Grid Perimeter Ring Support Shaft**
 - 3/29/04 – 5/14/04

- **Drive Gear and Bearings**
 - 3/15/04 – 5/7/04

- **Rotation Stand Weldment**
 - 3/29/04 – 6/15/04

- **Z-Axis Horizontal Lift Spreader**
 - 3/29/04 – 6/11/04

- **Grid Perimeter Ring and brackets**
 - 3/29/04 – 5/14/04

- **4x4 Lift Fixture and Proof**
 - 4/12/04 – 5/27/04

- **1x4 Lift Fixture and proof**
 - 4/12/04 – 6/10/04

- **Proof Test Assemblies**
 - 4/5/04 – 6/14/04

- **4x4 Lift Fixture and Proof**
 - 4/12/04 – 5/27/04

- **Rotation Stand Assembly & Proof Test**
 - 6/16/04 – 7/21/04

- **Personnel Access Platforms and proof**
 - 4/19/04 – 6/14/04

- **Metrology Bay**
 - 3/8/04 – 4/19/04

- **Integration Readiness Review**
 - 7/8/04
Mechanical Ground Support Equipment (MGSE) – Status (All items complete by IRR)

<table>
<thead>
<tr>
<th>LAT I&T MGSE Item</th>
<th>Stress Analysis</th>
<th>Design - Drafting</th>
<th>Procurement</th>
<th>Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Status</td>
<td>Report</td>
<td>Modeled</td>
<td>Detailed</td>
</tr>
<tr>
<td>4x4 Integration Stand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x4 Rotation / Support Stand</td>
<td>√</td>
<td>75%</td>
<td>√</td>
<td>90%</td>
</tr>
<tr>
<td>Grid Perimeter Ring - Brackets</td>
<td>√</td>
<td>95%</td>
<td>√</td>
<td>99%</td>
</tr>
<tr>
<td>Support Shaft - Flange Assemblies</td>
<td>√</td>
<td>95%</td>
<td>√</td>
<td>99%</td>
</tr>
<tr>
<td>Personnel Access Platforms</td>
<td>40%</td>
<td>65%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Z Axis Up Lift Fixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z Axis Up Lift Spreader</td>
<td>√</td>
<td>95%</td>
<td>√</td>
<td>90%</td>
</tr>
<tr>
<td>Z Axis Up Tension Rod Assemblies</td>
<td>√</td>
<td>95%</td>
<td>30%</td>
<td>45%</td>
</tr>
<tr>
<td>Z Axis Horizontal Lift Fixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z Axis Horizontal Lift Spreader</td>
<td>√</td>
<td>95%</td>
<td>√</td>
<td>95%</td>
</tr>
<tr>
<td>Z Axis Horizontal Shackles</td>
<td>√</td>
<td>95%</td>
<td>√</td>
<td>95%</td>
</tr>
<tr>
<td>Z Axis Horizontal, Crane Scale Mod</td>
<td>√</td>
<td>95%</td>
<td>√</td>
<td>95%</td>
</tr>
<tr>
<td>Crane Scale Height Modification</td>
<td>√</td>
<td>95%</td>
<td>√</td>
<td>95%</td>
</tr>
<tr>
<td>4x4 MGSE Proof Test Assemblies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAL - Z Up Lift Fixture</td>
<td>√</td>
<td>*</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>CAL Alignment Tool</td>
<td>√</td>
<td>*</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>CAL Alignment Rods</td>
<td>√</td>
<td>*</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>CAL Inversion Stand / Interface</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>E-Box Shimming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metrology Bay with Stand</td>
<td>n/a</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Clamps, Align Rods, Lift Eyes, etc</td>
<td>n/a</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>TWR Mass Simulators</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM-2 Single Bay (TKR Interface Plate)</td>
<td>√</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x4 Lift Fixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x4 Lift Spreader</td>
<td>√</td>
<td>90%</td>
<td>√</td>
<td>80%</td>
</tr>
<tr>
<td>1x4 Tension Rod Assemblies</td>
<td>√</td>
<td>90%</td>
<td>√</td>
<td>60%</td>
</tr>
<tr>
<td>TKR - TKR No Touch at Ascent Tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Hardware in hand and proof test complete
Personnel Access Platform TKR

- PAP provides ready access to allow crew to Attach or Remove TKR Lift Fixture from any bay position

- TKR cables will need to be dressed to their –Z end to allow TKR motion up and over other installed TKRs
Electrical Ground Support Equipment (EGSE) / Online - Test Stand Definitions through two tower

Status:

<table>
<thead>
<tr>
<th>Stand No.</th>
<th>Complete</th>
<th>Complete</th>
<th>1st Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-1</td>
<td>TS-2a</td>
<td>TS-2b</td>
<td></td>
</tr>
<tr>
<td>EGSE Software</td>
<td>=>LATTE 2</td>
<td>LATTE 2+</td>
<td>LATTE 3</td>
</tr>
<tr>
<td>Flight Software</td>
<td>EM1</td>
<td>EM1</td>
<td>EM2</td>
</tr>
<tr>
<td>PC with VME crate, LCB and SBC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X board</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>Bench and EGSE TEMPS</td>
<td>Bench</td>
<td>EM or flight PDU</td>
</tr>
<tr>
<td>Spacecraft Interface Simulator (SIS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test phase description

Tracker or Cal receiving test	X	
TKR installation in EM single bay	X	
ACD receiving test		
Cal/TEM/TEMPS integration	X	
Tower integration in EM Single Bay and in grid	X	
2+ towers in grid through GASU and PDU installation, can be used up to launch for low level tests including ACD		
Tests EPU and SIU after installation, including before all 16 towers are integrated		
Full up LAT testing		
Single Tower EGSE Configuration (TS-1 / 2a)
Particle Test

Van de Graaff

Status:
- 1 kHz g into 4p sr during EM test
- > 100 kHz g into 4p sr with upgraded VdG in work
- Electron veto upgrade in work
- Complete by 6/18/04

Cosmic Ray Scintillator

Status: Needs upgraded support 6/18/04

BGO Monitor

Status: Needs data acquisition system upgrade 6/18/04

Integration and Test

Procedures for equipment setup complete by 6/18/04

Spare Parts for 22 components (8 already have, 14 ordered by 4/15/04)

Integration Readiness Review 7/8/04
Science Verification, Analysis, and Calibration (SVAC)

- Calibrations
 - To verify that offline/online calibrations agree
 - To improve calibrations by using additional LAT information not available to subsystems
 - To develop trend analyses to provide history of calibrations

- Data analyses
 - To apply SAS reconstruction algorithms on real data
 - To uncover and quantify any instrumental effects that could have an impact on science data analysis

- SVAC depends strongly on work outside SVAC
 - Subsystem inputs
 - SAS Calibration infrastructure
 - SAS Pipeline Infrastructure
 - SAS/Online Event Format definitions
Science Verification, Analysis, and Calibration (SVAC) - Roadmap

- SAS Calibration Algorithms (May)
- SAS Database (May)
- SAS Pipeline Infrastructure (March - April)
- SAS Geometry Review (April)
- SVAC Acceptance and Test of SAS Algorithms (May - July)
- SVAC Database and Calibration trending (March - July)
- SVAC Data Pipeline (May-June)
- 1 & 2 Tower Geometry (April - May)
- MC Datasets 1 & 2 tower (May)
- Integration Readiness Review 7/8/04
- Instrument Test Analysis (March – July)
- EM 1 data analysis (March - May)
- SVAC Workshop (May)
- EM 2 data analysis (April - June)
Variances Schedule and Cost

- **Schedule**
 - **Budgeted Cost of Work Scheduled (BCWS):** 3125 k$
 - **Budgeted Cost of Work Performed (BCWP):** 3111 k$
 - **Schedule Variance:** -14 k$ or 0.5%

- **Cost**
 - **Budgeted Cost of Work Performed (BCWP):** 3111 k$
 - **Actual Cost of Work Performed (ACWP):** 3037 k$
 - **Cost Variance:** +74 k$ or 2.4%

- The Integration and Test Subsystem schedule and costs are under control.
Critical Path to Integration of First Flight Module

Tower Integration EGSE Dev & Support 5/18/04 (0) → EGSE Validation for Tower Integration 5/19/04 (0) → EGSE Ready for Integration 5/20/04 (0) → Receive / Inspect Cal Module A 8/13/04 (-24) → Integrate Flight TKR/Cal Towers A 8/27/04 (-11) → Functional Tower Test - A 9/13/04 (-11)

Completion Date (Baseline Variance)

Issues driving critical path
• Test requirements
 – Working closely with Systems in weekly meetings to drive to closure
 • LAT Performance and Operations Test Plan LAT-MD-02730 6/10/04
 – Rapid progress possible on I&T Test plan
 • Integration and Test Plan LAT-MD-01376 5/1/04
 – Working with Design Integration and Tracker in weekly meeting to drive to closure
 • Survey Plan, 5/1/04 draft, 5/31/04 final
• Subsystem scripts
 – I&T EGSE/Online working closely with subsystems to enable delivery by 5/1/04
• Time on Electronics Test-Bed for EGSE V&V and technician training
 – Electronics will give I&T required access to needed equipment starting on 5/1/04
Approved Cost Changes Since Rebaseline

(k$)

4.1.9 Baseline, November 03 $6,384

Changes:
- Additional I&T Manpower $523*
- IFCT Engineering/Design $284
- Tracker/Grid Interface Redesign $35
- Stanford Benefits Rate Increase $147

Total Change $989

4.1.9 Baseline, February 04 $7,373

*Corresponding NASA funding increase, change was pending during rebaseline effort.
Where will I&T be in 6 months?

• The Integration Readiness Review (IRR) will have been completed.
 – The procedures for integration have will been completed.
 – The MGSE for LAT integration will have been built and tested.
 – The EGSE/Online for integration will have been completed and tested in place.
 – Configuration control in place.
 – Technicians will have been trained.
 – Facility will be certified.
 – Van de Graaff will be ready.
• The Grid will have been received and installed on the rotation stand.
• The first tower will have been received, installed and tested.
• The second tower will have been received and work will have begun on installation and testing.
Summary

• I&T is on track to begin integration as currently scheduled.