13.6 Test with primary and redundant GASU connected to FREE

Photocopy complete section four times and use it to verify continuity for Ref. Des. JL-180 through JL-187. This corresponds to GASU 4LB-A and B, or 4RB-A and B, or 4RA-A and B, and 4LA-A and B. One each primary and redundant connections are made, thus there are 4 copies of measurements.

<table>
<thead>
<tr>
<th>TEST DATA SHEET</th>
<th>Unit S/N: C-LAT 1145</th>
<th>Date: 08/16/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Operator: J. Marvik</td>
<td>Temperature: 23 C</td>
</tr>
<tr>
<td>Para</td>
<td>Description</td>
<td>Passed</td>
</tr>
<tr>
<td>Test without FREE connected</td>
<td></td>
<td>skip</td>
</tr>
<tr>
<td>Test with FREE connected, Voltage Tests</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Test with FREE connected, Function Test Primary GASU Side</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Test with FREE connected, Function Test Primary GASU Side</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

Hard copies of this document are for REFERENCE ONLY and should not be considere the latest revision.

LAT-TD-04267 Page 74
13.6.1 Connectors under test

Ref. Des. JL-180 through JL-187. This corresponds to GASU (4LB-A and B), or (4RB-A and B), or (4RA-A and B), and (4LA-A and B).

Enter Connector pair Ref Des here, primary and redundant:
13.6.2 Test without FREE Connection

This test can be skipped since it is not required.

Skipped

Primary BOB with connection, redundant side BOB with open connections. Measure on FREE side connection of redundant side BOB

13.6.2.1 Supply Voltage Test with FREE power off

<table>
<thead>
<tr>
<th>Measurement No.</th>
<th>Signal Pair</th>
<th>Pin 1</th>
<th>Expected Voltage</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD_VDD</td>
<td>JL-180-1</td>
<td>V < 1 V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ACD_VSW</td>
<td>JL-180-5</td>
<td>V < 0.5 V</td>
<td></td>
</tr>
</tbody>
</table>

Assuming load current (from LED) is a few milliamps, otherwise pin 1 is < 29V and pin 1 < 3.9V for no load

13.6.2.2 Voltage Test with FREE power disabled

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>PIN</th>
<th>EXPECTED VOLTAGE</th>
<th>PASS / FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVETO_0_P</td>
<td>71</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_0_M</td>
<td>70</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_1_P</td>
<td>69</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_1_M</td>
<td>68</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_2_P</td>
<td>67</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_2_M</td>
<td>66</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_3_P</td>
<td>65</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_3_M</td>
<td>64</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_4_P</td>
<td>63</td>
<td>V < 1V</td>
<td></td>
</tr>
</tbody>
</table>

Held copies of this document are for REFERENCE ONLY and should not be considered the latest revision.
<table>
<thead>
<tr>
<th>SIGNAL_NAME</th>
<th>PIN</th>
<th>EXPECTED VOLTAGE</th>
<th>PASS / FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVETO_x_M</td>
<td>62</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_3_P</td>
<td>61</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_5_M</td>
<td>60</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_8_P</td>
<td>59</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_6_P</td>
<td>58</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_7_P</td>
<td>57</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_7_M</td>
<td>56</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_8_P</td>
<td>55</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_8_M</td>
<td>54</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_9_P</td>
<td>53</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_3_M</td>
<td>52</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_10_P</td>
<td>51</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_10_M</td>
<td>50</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_11_P</td>
<td>49</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_11_M</td>
<td>48</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_12_P</td>
<td>47</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_12_M</td>
<td>46</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_13_P</td>
<td>45</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_13_M</td>
<td>44</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_14_P</td>
<td>43</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_14_M</td>
<td>42</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_15_P</td>
<td>41</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_15_M</td>
<td>40</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_16_P</td>
<td>39</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_16_M</td>
<td>38</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_17_P</td>
<td>37</td>
<td>V < 1V</td>
<td></td>
</tr>
</tbody>
</table>

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision.
Table of SIGNAL NAMES and Corresponding Values

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>PIN</th>
<th>EXPECTED VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVETO_D17_M</td>
<td>20</td>
<td>V < 1V</td>
</tr>
<tr>
<td>RDIO_P</td>
<td>21</td>
<td>V < 1V</td>
</tr>
<tr>
<td>ACNO_M</td>
<td>22</td>
<td>V < 1V</td>
</tr>
<tr>
<td>CLK_P</td>
<td>79</td>
<td>V < 1V to 1.4V</td>
</tr>
<tr>
<td>CLK_M</td>
<td>78</td>
<td>V < 1V to 1.4V</td>
</tr>
<tr>
<td>NOME_P</td>
<td>77</td>
<td>V < 1V</td>
</tr>
<tr>
<td>NADP</td>
<td>76</td>
<td>V < 1V</td>
</tr>
<tr>
<td>NISESET_P</td>
<td>75</td>
<td>V < 0.3V</td>
</tr>
<tr>
<td>NISESET_M</td>
<td>74</td>
<td>V < 0.3V</td>
</tr>
<tr>
<td>NI_DATA_P</td>
<td>73</td>
<td>V < 0.3V</td>
</tr>
<tr>
<td>NI_DATA_M</td>
<td>72</td>
<td>V < 0.3V</td>
</tr>
<tr>
<td>HV_MON1_P</td>
<td>23</td>
<td>V < 0.1V</td>
</tr>
<tr>
<td>HV_MON1_M</td>
<td>24</td>
<td>V < 0.1V</td>
</tr>
<tr>
<td>TEMP_MON_P</td>
<td>25</td>
<td>V < 0.5V</td>
</tr>
<tr>
<td>TEMP_MON_M</td>
<td>26</td>
<td>V < 0.5V</td>
</tr>
<tr>
<td>HV_MON2_P</td>
<td>27</td>
<td>V < 0.1V</td>
</tr>
<tr>
<td>HV_MON2_M</td>
<td>28</td>
<td>V < 0.1V</td>
</tr>
<tr>
<td>ACO_VDD0</td>
<td>30</td>
<td>V < 1V</td>
</tr>
<tr>
<td>ACO_VDD1</td>
<td>31</td>
<td>V < 0.1V</td>
</tr>
<tr>
<td>ACO_VDD2</td>
<td>29</td>
<td>V < 1V</td>
</tr>
<tr>
<td>ACO_VDD3</td>
<td>30</td>
<td>V < 0.1V</td>
</tr>
<tr>
<td>ACO_BV1</td>
<td>31</td>
<td>V < 0.5V</td>
</tr>
<tr>
<td>ACO_BV2</td>
<td>32</td>
<td>V < 0.1V</td>
</tr>
</tbody>
</table>

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision.

LAT-TD-04267 Page 78
Test for EGSE ACD G3 Test Stand with OASU Instrumented to Simultaneous Test up to 12 FREE Cards (including Safe-to-Mate)

13.6.2.3 Stray Voltage Test with FREE power enabled

Nominal V, ACD_V_adjust = 0V

<table>
<thead>
<tr>
<th>Measurement No.</th>
<th>Signal Pair</th>
<th>Pin 1</th>
<th>Expected Voltage</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD_VDD</td>
<td>JL-180-1</td>
<td>3.2V < V < 3.6V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ACD_28V</td>
<td>JL-186-5</td>
<td>25V < V < 28V</td>
<td></td>
</tr>
</tbody>
</table>

13.6.2.4 Voltage Test with FREE power enabled

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>PIN</th>
<th>EXPECTED VOLTAGE</th>
<th>PASS / FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVETO_0_P</td>
<td>71</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_0_M</td>
<td>70</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_1_P</td>
<td>69</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_1_M</td>
<td>68</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_2_P</td>
<td>67</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_2_M</td>
<td>66</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_3_P</td>
<td>65</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_3_M</td>
<td>64</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_4_P</td>
<td>63</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_4_M</td>
<td>62</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_5_P</td>
<td>61</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_5_M</td>
<td>60</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_6_P</td>
<td>59</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_6_M</td>
<td>58</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_7_P</td>
<td>57</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_7_M</td>
<td>56</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
</tbody>
</table>

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision.

LAT-TD-04267 Page 79
<table>
<thead>
<tr>
<th>SIGNAL_NAME</th>
<th>PIN</th>
<th>EXPECTED VOLTAGE</th>
<th>PASS / FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVETO_8_P</td>
<td>56</td>
<td>5V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_8_M</td>
<td>54</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_9_P</td>
<td>53</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_9_M</td>
<td>52</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_10_P</td>
<td>51</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_10_M</td>
<td>50</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_11_P</td>
<td>49</td>
<td>5V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_11_M</td>
<td>48</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_12_P</td>
<td>47</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_12_M</td>
<td>46</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_13_P</td>
<td>45</td>
<td>5V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_13_M</td>
<td>44</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_14_P</td>
<td>43</td>
<td>5V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_14_M</td>
<td>42</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_15_P</td>
<td>41</td>
<td>5V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_15_M</td>
<td>40</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_16_P</td>
<td>37</td>
<td>3V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_16_M</td>
<td>36</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NVETO_17_P</td>
<td>19</td>
<td>5V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NVETO_17_M</td>
<td>20</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>NCOND_P</td>
<td>21</td>
<td>5V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NCOND_M</td>
<td>22</td>
<td>0V < V < 1V</td>
<td></td>
</tr>
<tr>
<td>CLK_P</td>
<td>79</td>
<td>1V < V < 1.4V</td>
<td></td>
</tr>
<tr>
<td>CLK_M</td>
<td>78</td>
<td>1V < V < 1.4V</td>
<td></td>
</tr>
<tr>
<td>NDATA_P</td>
<td>77</td>
<td>0V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NDATA_M</td>
<td>76</td>
<td>0V < V < 3.5V</td>
<td></td>
</tr>
<tr>
<td>NRRESET_P</td>
<td>75</td>
<td>0.5V < V < 1.5V</td>
<td></td>
</tr>
<tr>
<td>NRRESET_M</td>
<td>74</td>
<td>0.5V < V < 1.5V</td>
<td></td>
</tr>
<tr>
<td>HV_MON_C_P</td>
<td>23</td>
<td>1V < V < 2V</td>
<td></td>
</tr>
<tr>
<td>HV_MON_C_M</td>
<td>24</td>
<td>1V < V < 2V</td>
<td></td>
</tr>
</tbody>
</table>

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision.

LAT-TD-04267 Page 80
13.6.3 Test with FREE connected, Voltage Tests

13.6.3.1 Stray Voltage Test at the AEM Interface with FREE power disabled

1) Turn off 28-V power
2) With the shorting plugs inserted in the break out boxes, turn on 28V bench supply to primary GASU.
3) Boot VME-SBC
4) Boot successful: Yes/No
5) Start LATTE (see IDT LATTE instructions)
6) Measurement | Signal | Expected Current | Verified

Have a copy of this document are for REFERENCE ONLY and should not be considered the latest revision.

LAT-7D-04257 Page 81
Test for EGSE ACD G3 Test Stand with GASU Instrumented to Simultaneous Test up to 12 FREE Cards (including Safe-to-Mate)

<table>
<thead>
<tr>
<th>No.</th>
<th>Signal</th>
<th>Pin 1</th>
<th>Expected Voltage</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28V bench supply</td>
<td>250 mA < I < 325 mA</td>
<td>290</td>
<td></td>
</tr>
</tbody>
</table>

7) Make sure FREE power-on register is turned-off.
8) Run AEM test scripts

Pass/Fail

13.6.3.2 Supply Voltage Level Test with FREE power disabled

(nominal VDD-ACD)

<table>
<thead>
<tr>
<th>Measurement No.</th>
<th>Signal Pair</th>
<th>Pin 1</th>
<th>Expected Voltage</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD_VDD</td>
<td>JL-180-1</td>
<td>V < 1V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ACD_28V</td>
<td>JL-180-5</td>
<td>V < 0.1V</td>
<td></td>
</tr>
</tbody>
</table>

13.6.3.3 Bench Supply Current Level Test with FREE power enabled

<table>
<thead>
<tr>
<th>Measurement No.</th>
<th>Signal</th>
<th>Expected Current</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28V bench supply</td>
<td>330 mA < I < 380 mA</td>
<td></td>
</tr>
</tbody>
</table>

13.6.3.4 Supply Voltage Level Test with FREE power enabled

(nominal VDD-ACD)

<table>
<thead>
<tr>
<th>Measurement No.</th>
<th>Signal Pair</th>
<th>Pin 1</th>
<th>Expected Voltage</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD_VDD</td>
<td>JL-180-1</td>
<td>3.2V < V < 3.7V</td>
<td></td>
</tr>
</tbody>
</table>

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision.
13.6.3.5 Voltage Test at redundant connection with primary FREE power enabled

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>PIN</th>
<th>EXPECTED VOLTAGE</th>
<th>PASS / FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVE TO _6_P</td>
<td>71</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _3_M</td>
<td>70</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _1_P</td>
<td>69</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _2_M</td>
<td>68</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _1_P</td>
<td>67</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _2_M</td>
<td>66</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _3_P</td>
<td>65</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _3_M</td>
<td>64</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _4_P</td>
<td>63</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _4_M</td>
<td>62</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _5_P</td>
<td>61</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _5_M</td>
<td>60</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _6_P</td>
<td>59</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _5_M</td>
<td>58</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _7_P</td>
<td>57</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _7_M</td>
<td>56</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _8_P</td>
<td>55</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _8_M</td>
<td>54</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _9_P</td>
<td>53</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _9_M</td>
<td>52</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _10_P</td>
<td>51</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _10_M</td>
<td>50</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _11_P</td>
<td>49</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _11_M</td>
<td>48</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _12_P</td>
<td>47</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _12_M</td>
<td>46</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _13_P</td>
<td>45</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _13_M</td>
<td>44</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _14_P</td>
<td>43</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _14_M</td>
<td>42</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _15_P</td>
<td>41</td>
<td>1.1V < V < 1.5V</td>
<td>✓</td>
</tr>
<tr>
<td>NVE TO _15_M</td>
<td>40</td>
<td>0.8V < V < 1.3V</td>
<td>✓</td>
</tr>
</tbody>
</table>

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision.

LAT-TD-04287 Page 83
<table>
<thead>
<tr>
<th>SIGNAL_NAME</th>
<th>PIN</th>
<th>EXPECTED VOLTAGE</th>
<th>PASS / FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVETO_16_P</td>
<td>17</td>
<td>1.1V < V < 1.5V</td>
<td>✔</td>
</tr>
<tr>
<td>NVETO_17_M</td>
<td>18</td>
<td>0.6V < V < 1.3V</td>
<td>✔</td>
</tr>
<tr>
<td>NVETO_17_P</td>
<td>19</td>
<td>1.1V < V < 1.5V</td>
<td>✔</td>
</tr>
<tr>
<td>NVETO_18_M</td>
<td>19</td>
<td>0.6V < V < 1.3V</td>
<td>✔</td>
</tr>
<tr>
<td>TUNDO_P</td>
<td>21</td>
<td>0.6V < V < 1.5V</td>
<td>✔</td>
</tr>
<tr>
<td>NOEM_M</td>
<td>22</td>
<td>0.6V x < 1.3V</td>
<td>✔</td>
</tr>
<tr>
<td>CLK_P</td>
<td>79</td>
<td>0.6V < V < 1.3V</td>
<td>✔</td>
</tr>
<tr>
<td>CLK_M</td>
<td>78</td>
<td>0.6V < V < 1.3V</td>
<td>✔</td>
</tr>
<tr>
<td>NOEM_D</td>
<td>77</td>
<td>0.6V < V < 3.3V</td>
<td>✔</td>
</tr>
<tr>
<td>NOEM_M</td>
<td>76</td>
<td>0.6V < V < 3.3V</td>
<td>✔</td>
</tr>
<tr>
<td>NRESET_P</td>
<td>75</td>
<td>1.1V < V < 1.5V</td>
<td>✔</td>
</tr>
<tr>
<td>NRESET_N</td>
<td>74</td>
<td>0.6V < V < 1.3V</td>
<td>✔</td>
</tr>
<tr>
<td>NDATA_P</td>
<td>73</td>
<td>1.2V < V < 1.5V</td>
<td>✔</td>
</tr>
<tr>
<td>NDATA_M</td>
<td>72</td>
<td>0.6V < V < 1.3V</td>
<td>✔</td>
</tr>
<tr>
<td>HV_MON_1_P</td>
<td>23</td>
<td>1.2V < V < 1.6V</td>
<td>✔</td>
</tr>
<tr>
<td>HV_MON_1_M</td>
<td>24</td>
<td>1.2V < V < 1.6V</td>
<td>✔</td>
</tr>
<tr>
<td>TEMP_MON_P</td>
<td>25</td>
<td>0V < V < 1V</td>
<td>✔</td>
</tr>
<tr>
<td>TEMP_MON_M</td>
<td>26</td>
<td>0V < V < 1V</td>
<td>✔</td>
</tr>
<tr>
<td>HV_MON_2_P</td>
<td>27</td>
<td>1.2V < V < 1.6V</td>
<td>✔</td>
</tr>
<tr>
<td>HV_MON_2_M</td>
<td>28</td>
<td>1.2V < V < 1.6V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_VDDR</td>
<td>1</td>
<td>3.3V < V < 3.6V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_GND</td>
<td>30</td>
<td>0 < V < 0.1V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_VOS1</td>
<td>3</td>
<td>3.3V < V < 3.6V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_GND1</td>
<td>31</td>
<td>0 < V < 0.1V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_VOS2</td>
<td>4</td>
<td>3.3V < V < 3.6V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_GND2</td>
<td>32</td>
<td>0 < V < 0.1V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_VIR</td>
<td>5</td>
<td>5V < V < 28V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_VRTN0</td>
<td>33</td>
<td>V < 0.1V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_VRTN1</td>
<td>7</td>
<td>2V < V < 28V</td>
<td>✔</td>
</tr>
<tr>
<td>ACOG_VRTN1</td>
<td>34</td>
<td>V < 0.1V</td>
<td>✔</td>
</tr>
</tbody>
</table>
13.6.4 Test with FREE connected: FREE Function Test GASU primary side

13.6.4.1 Nominal ACD-3.3V, System clock at 20 MHz

13.6.4.1.1 Write/Read FREE registers

Script Pass/Fail:

13.6.4.1.2 Event Data

Script Pass/Fail:

13.6.4.1.3 Trigger

Script Pass/Fail:

13.6.5 Test with FREE connected: FREE Function Test GASU redundant side

1) Turn off 28-V power
2) With the shorting plugs inserted in the break out boxes, turn on 28V bench supply to redundant GASU.
3) Boot VME-SBC
4) Boot successful: Yes/No
5) Start LATTE (see LATTE instructions)
6) Make sure FREE power-on register is turned-off.
7) Run AEM test scripts

8) Pass/Fail

13.6.5.1 Supply Voltage Level Test with FREE power disabled

(nominal VDD-ACD)

Third copies of this document are for REFERENCE ONLY and should not be considered the latest revision.

LAT-TD-04267 Page 85
Test for EGSE ACD G3 Test Stand with GASU Instrumented to Simultaneous Test up to 12 FREE Cards (including Safe-to-Mate)

<table>
<thead>
<tr>
<th>Measurement No.</th>
<th>Signal Pair</th>
<th>Pin 1</th>
<th>Expected Voltage</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD_VDD</td>
<td>JL-180 - 1</td>
<td>V < 1V</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>ACD_28V</td>
<td>JL-180 - 5</td>
<td>V < 0.5V</td>
<td></td>
</tr>
</tbody>
</table>

13.6.5.2 Bench Supply Current Level Test with FREE power enabled

Enable FREE Power

<table>
<thead>
<tr>
<th>Measurement No.</th>
<th>Signal</th>
<th>Expected Current</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28V bench supply</td>
<td>330 mA < 1 < 570 mA</td>
<td></td>
</tr>
</tbody>
</table>

13.6.5.3 Nominal ACD-3.7V, System clock at 20 MHz

13.6.5.3.1 Write/Read FREE registers

Scripts Pass/Fail:

13.6.5.3.2 Event Data

Scripts Pass/Fail:

13.6.5.3.3 Trigger

Scripts Pass/Fail:

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision.

LAT-TD-04267