More About Shaped Readout Noise

J. Eric Grove
Introduction

- Recall Sasha’s presentation from 2-Tower study

- Small bias in normal events that follow closely after a first event
 - What is it? Where is it from?
 - Digital readout noise picked up by channels nearest the digital path on each CAL AFEE board, shaped by the slow shaping amp, and added to readout of current event.
 - How large is the effect?
 - See below
 - How close in time must the events be?
 - $\Delta t < \sim 35\text{ms}$ (strongest at 25-30ms)
 - Effect is strongly systematic, so it “can be calibrated out”
 - Specific channels are most susceptible, can be filtered out
 - Shape is known, can be calibrated out
Spurious signals at $\Delta t < 30 \mu s$

- **Spurious signal in a few channels**
 - *normal* muon events within 31 μs from previous trigger show exponentially decaying signals in empty xtals
 - amplitude ~ 170 LEX8 ADC units ($\sim 1/2$ MIP)

- **These are normal, TKR-triggered muons**
 - Statistics: ~ 50 events out of 150k, consistent with 80 Hz event rate:
 - (31 $\mu s - 26.5$ $\mu s) \times 80 \text{ Hz} \times 10^{-6} \times 150,000 = 54$ events
 - This is **not** a retriggering issue.

Data: 150k muons from run 135002134 (Flight config, 2 twrs)
Largest effect

- Channel with largest effect is Tower 2, Layer 1, Col 5
 - Amplitude at $\Delta t = 26.5$ us
 - ~ 1 MIP, ~ 12 MeV
 - Color indicates Δt
 - Weaker effect in all other channels
 - See next page

- Suggests possible filter
 - Short Δt
 - Deviation from typical asymmetry measure
 - Known GCFEs
 - See next page
Summary of all channels

- Effect is much smaller in typical channel, but has same time-dependence.

- To study all channels, we remove the exponential:
 - Pick one reference channel, with strong contamination
 - refChan = FM117, row Y0, face -, xtal column 5
 - Event by event, normalize each channel to the reference channel
 - normSignal[iChan] = signal[iChan] / signal[refChan]
 - Calculate the median of the normalized signal for all events with $\Delta t < 35 \mu s$.
 - Plot normalized signal
Summary of all channels

- **Normalized**
 - Recall 1 unit ~ 1 MIP at 26.5 us
 - Five chans with >0.8
 - Seven chans with >0.5

- **Systematic location (magenta)**
 - $X^+, Y^- \text{ column 5}$
 - $X^-, Y^+ \text{ column 6}$
 - We know where to look

- **Recall XtalRecon**
 - Energy in xtal = geometric mean of both ends
 - $E = \sqrt{E_{\text{plus}} \times E_{\text{minus}}}$
 - Thus, effect on energy measurement is diluted

(Same plot as previous page)
Effect on simple energy sum

- **CalEneSum**
 - *Simplest total E*
 - Upper limit to this effect
 - No filtering of known xtals
 - *Affects short times*
 - Strongest below ~30 us
 - Negligible above ~35 us

- **Stay tuned**
 - Need to remove known xtals
 - Try correction factor
 - ...

Events miss the CAL

Muon peak