Wrap-up: Science Tools

What we got done at the meeting
What needs to get done
Getting to DC1
Who is doing what?

Seth Digel
HEPL/Stanford Univ.
18 July 2003
What got done at the meeting

- **Talks**
 - You heard them, too

- **Working sessions-type topics**
 - **Observation simulation**
 - Simulated data sets, variable (periodic) sources, handling multiple classes of events; Claudia Cecchi will be coordinator of obs. sim. science tools with Jim Chiang
 - **Graphics – AIDA & Plplot**
 - Round table forum. We’ve talked ourselves out of AIDA (too much overhead just for plotting) and raw Plplot, may be talking ourselves into ROOT
 - **HOOPS – how-to**
 - How went?
 - **Data layer – core developer-level discussion: what it can do for you**
 - Binned event class (data type) implemented; need one or two more for GOODI to be useful for the DC1 science tools
 - **D1 & D2 details – like how to communicate with them**
 - How went? Beowulf at SLAC has been rediscovered with Julie McEnery’s help
What got done (2)

- **Source detection**
 - Variable/moving sources, tradeoffs in response functions, computation time; N-dim Bayesian blocks, ICA, wavelet, other alternative methods for source detection?
- **Interstellar emission model**
- **D3**
 - Parameterization of response functions, interface work
- **Data products**
 - ICD between IOC and SSC; L0.5 data
What needs to get done

- [Out of our hands] Derivation of LAT response functions
 - Parameterizing them, studying them for likelihood analysis, will be in our hands
 - Biggest concern in terms of the end-to-end goal of DC1
 - For DC1 goals (at least as far as science tools go), we could get by with GLAST25 response functions and our high-level simulators

- D1 & D2
 - For D1, need to converge on contents. Sensible suggestion: include the variables that are input to the classification trees [although then would have to include ‘flattening’ information]
 - For development, keeping up on the LAT side is the issue

- Likelihood tool
 - Source model definition, commanding, user documentation
 - Wilks’ theorem?
What needs to get done (2)

• Observation simulation
 – obsSim & Light Simulator cross check
 – Basically close to where we want to be for DC1; livetime <> real time; read D2 output

• Map generation
 – Can DS9 do what we want? Maybe with exposure calculation utility

• L1 pipeline
 – Waiting for OPUS code; in the meantime can work on the scripts that we’ll feed opus
 – We’ll want to provide input regarding the ‘Monte Carlo Truth’ sky

• Core
 – Graphics – what tools need it for DC1?
 – HOOPS and GOODI – really should be in there; don’t foresee that this will be a problem
What do we need from DC1?
- Technical aspects
- Also to get software in a state where non-developer users can use it
 - install it, understand it, run it

For collaboration meeting in September, need to introduce the DC1-era science tools

WBS says that we will have a month of testing our tools in advance of release (pipeline → D1 & D2 → likelihood analysis (with exposure calc.) → (pseudo)science

‘Release’ means more than a tag
Who is doing what?

- **Core – Science Tools Core**
 - Development environment, release manager
 - HOOPS (OO PIL)
 - GOODI – data representation, i/o
 - Plplot/AIDA

- **D1 database and supporting utilities** – DB & related utils

- **D2 pointing/livetime/mode history** – DB & related utils

- **D3 response functions, form and interface** – Davis & ?

- **O1 orbit and attitude simulation** – Obs. sim

- **O2 & interim simulated data set** – Obs. sim

- **A1 & supporting tools**
 - Functional prototype likelihood analysis – Chiang, Source detection
 - Source model definition - ?
 - Exposure calculation? – Chiang, Source detection
 - Response function visualization - ?

- **Map generation** – counts, exposure, intensity, model - ?
Components of the Standard Analysis Environment

User Interface aspects of the standard analysis environment, such as Image/plot display (UI2), Command line interface & scripting (UI4), and GUI & Web access (UI5) are not shown explicitly.

1 This tool also performs periodicity tests and the results can be used to refine ephemerides
2 These tools can also take as input binned data from other instruments, e.g., GBM; the corresponding DRMs must also be available.