LAT-PR-xxxxx:

TKR-Grid I/F Anomaly
Structural Assessment

John Ku kuj@slac.stanford.edu

3 Dec 2003
Agenda: TKR-Grid I/F Anomaly Structural Assessment

• Loads Assessment
 – Current Loads Assumptions – a look at Grid analysis, TKR analysis and test loads
 – True Loads Experienced at Test – a study in probability density

• Grid Analysis Reprised
 – Margins of Safety Summary for bearing of shoulder bolt on Grid, with expected design dimensions (shoulder/thread engagement)
 – Adjusted margins of safety for as-tested design

• Shoulder Bolt Bending Loads
 – Bolt strength
 – Bolt margins under instantaneous load
 – Bolt margins under cyclic load
 – Unique loading due to 2-thread engagements / Helicoil pullout strength

• System Behavior due to dead band, slippage and impacting
 – Dead band, i.e. TKR alignment and positional uncertainty
 – Slippage, i.e. relative motion between the two mating surfaces after the frictional capacity is exceeded
 – Impacting, i.e. two initially separated surfaces come into contact and exchange momentum

• Conclusions, recommendations and Further Work
Loads Assessment

- Current Loads Assumptions – a look at Grid analysis, TKR analysis and test loads
 - New CLA derived loads are most realistic loads available
 - The maximum TKR corner flexure loads from September 2003 CLA
 - $S_{max} = 691 \text{ N}$
 - $Fz_{max} = 945 \text{ N}$
 - $1171 \text{ N (1303 N NTE mass)}$
 - With 1.1133 factor applied to achieve max launch mass, $F_{max} = 1303 \text{ N}$
 - Flight loads are significantly more benign than the random vibration test loads.
 - The maximum TKR attachment load due to 68 flight load cases
 - $F_x_{max} = 1642 \text{ N}$
 - $F_y_{max} = 1615 \text{ N}$
 - $F_z_{max} = 2280 \text{ N}$
 - $3241 \text{ N (3608 N NTE mass)}$
 - With 1.1133 factor applied to achieve max launch mass, $F_{max} = 3608 \text{ N}$
 - Loads induced at a random test are notoriously high due to high amplification above spec levels.
 - Hytec design loads were governed by static equivalent loads due to random vibration testing
 - 3-σ design load of 27g lateral, plus shear component added
 - 4235 N (952 lb) shear load on fastener
 - During test, “notching” was allowed, 3-σ load was 24g
 - 3764 N
 - True Loads Experienced at Test – a study in probability density
 - For any instantaneous response, 3-σ load covers 99.87% of peaks
 - As total time of exposure increases, 3-σ no longer covers 99.87% of peaks
 - From Clough, Dynamics of Structures, the probability wrt number of standard deviations can be observed as
 $$F_c(n_\sigma) = \exp \left[-N \cdot \exp \left(-\frac{n_\sigma^2}{2} \right) \right]$$
The cumulative distribution function depends on:
- $f_1 =$ frequency of primary mode
- $t =$ duration
- $N =$ number of positive maxima $= f_1 \times t$
- $n_s =$ number of standard deviations

This function is plotted at right based on our observed test parameters:
- $f_1 =$ 130 Hz
- $t =$ 120 s
- $N =$ $f_1 \times t =$ 15600 cycles
- $n_s =$ range from 3.0 to 6.0 shown

The probability of choosing an enveloping load for:
- $3-$σ is 0.000%, i.e. 100% chance to hit $3-$σ
- $4-$σ is 0.534%, i.e. 99.466% chance to hit $4-$σ
- $5.8-$σ is 99.923%, which meets our goal to envelop 99.87% of all peaks over duration

If we apply $5.8-$σ to the Hytec 1-σ load (1412 N),
- Peak design load = 8190 N

7.00x higher than CLA!
Shoulder Bolt Bearing Calculation Assumptions

Load distributions considered

Distribution 1 – Uniform through depth – UNCONSERVATIVE.
This distribution idealizes the bearing load of the pin on the hole, but is valid for short pins (L/D is a small number). In this case, L/D is 0.89, which is not small.

Distribution 2 – Trapezoidal; Linear varying through depth – REALISTIC.
This distribution is probably the most realistic case. However, there is not a clear method of calculating w1 and w2.

Distribution 3 – Triangular; Linear varying through depth – CONSERVATIVE.
This distribution represents the critical pin depth where less engagement would result in a trapezoidal distribution and more engagement would result in pin bending, i.e. “Distribution 4.” This distribution is conservative and easy to calculate.

Distribution 4 – Bending; Linear varying through depth – MOST CONSERVATIVE.
This distribution is well suited for longer pins where pin bending may become a factor. In this case, it is not necessary to be overly conservative.
Grid Analysis Reprised

- **Margins of Safety Summary for bearing of shoulder bolt on Grid, with expected design dimensions (shoulder/thread engagement)**

<table>
<thead>
<tr>
<th></th>
<th>Peak Load [N]</th>
<th>Diameter [mm]</th>
<th>Engagement [mm]</th>
<th>Bearing Stress [MPa]</th>
<th>MS y</th>
<th>MS u</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>1303</td>
<td>6.35</td>
<td>5</td>
<td>82.08</td>
<td>2.56</td>
<td>3.14</td>
</tr>
<tr>
<td>Grid Analysis</td>
<td>3608</td>
<td>6.35</td>
<td>5</td>
<td>227.28</td>
<td>0.28</td>
<td>0.50</td>
</tr>
<tr>
<td>Hytec Analysis</td>
<td>3764</td>
<td>6.35</td>
<td>5</td>
<td>237.10</td>
<td>0.23</td>
<td>0.43</td>
</tr>
<tr>
<td>Peak Test Load</td>
<td>8190</td>
<td>6.35</td>
<td>5</td>
<td>515.91</td>
<td>-0.43</td>
<td>-0.34</td>
</tr>
</tbody>
</table>

- **Margins are positive, except for probability extreme loads**

- **Adjusted margins of safety for as-tested design (pin engagement ~0.125” as opposed to expected 0.197”)**

<table>
<thead>
<tr>
<th></th>
<th>Peak Load [N]</th>
<th>Diameter [mm]</th>
<th>Engagement [mm]</th>
<th>Bearing Stress [MPa]</th>
<th>MS y</th>
<th>MS u</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>1303</td>
<td>6.35</td>
<td>3.175</td>
<td>129.26</td>
<td>1.26</td>
<td>1.63</td>
</tr>
<tr>
<td>Grid Analysis</td>
<td>3608</td>
<td>6.35</td>
<td>3.175</td>
<td>357.91</td>
<td>-0.18</td>
<td>-0.05</td>
</tr>
<tr>
<td>Hytec Analysis</td>
<td>3764</td>
<td>6.35</td>
<td>3.175</td>
<td>373.39</td>
<td>-0.22</td>
<td>-0.09</td>
</tr>
<tr>
<td>Peak Test Load</td>
<td>8190</td>
<td>6.35</td>
<td>3.175</td>
<td>812.45</td>
<td>-0.64</td>
<td>-0.58</td>
</tr>
</tbody>
</table>

- **Margins are negative, implying some onset of failure during the test**
Shoulder Bolt Bending

- **Bolt strength**
 - Catalog item: McMaster-Carr, 18-8 Stainless (70 ksi /482 MPa strength)
- **What load is required to deflect the shoulder 0.004”**?
 - Based on linear beam theory, the tip load required is 12656 N. This corresponds to a linear stress of 6333 MPa, which has no physical meaning
- **What is the max bending stress at the root of the shoulder?**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>1303</td>
<td>4.75</td>
<td>2.50E-11</td>
<td>5</td>
<td>6.515</td>
<td>619</td>
<td>-0.44</td>
</tr>
<tr>
<td>Grid Analysis</td>
<td>3608</td>
<td>4.75</td>
<td>2.50E-11</td>
<td>5</td>
<td>18.04</td>
<td>1715</td>
<td>-0.80</td>
</tr>
<tr>
<td>Hytec Analysis</td>
<td>3764</td>
<td>4.75</td>
<td>2.50E-11</td>
<td>5</td>
<td>18.82</td>
<td>1789</td>
<td>-0.81</td>
</tr>
<tr>
<td>Peak Test Load</td>
<td>8190</td>
<td>4.75</td>
<td>2.50E-11</td>
<td>5</td>
<td>40.95</td>
<td>3892</td>
<td>-0.91</td>
</tr>
</tbody>
</table>

- This shows the bolt cannot carry the bending stress associated with the loads
- Conclusion: the should must not deform so as to put the threaded portion into bending

- **Unique loading due to 2-thread engagements**
 - Two thread engagement corresponds roughly to 1 DIA engagement. According to the helicoil strength document, the helicoil can withstand 2300 lbf of pullout.
 - The 70 ksi bolt is good for less than 1500 lbf
System Behavior due to dead band, slippage and impacting

- How does 4 mil diametral clearance affect overall system dynamic behavior?
 - Dead band, i.e. TKR alignment and positional uncertainty – possibility for classic spring stiffening effect
 - Based on test observations, this is not a significant effect
 - Slippage, i.e. relative motion between the two mating surfaces after the frictional capacity is exceeded
 - Clamping energy is released in the form of heat – this increases damping in the joint
 - Impacting, i.e. two initially separated surfaces come into contact and exchange momentum
Conclusions, Recommendations and Further Work

• Conclusions

• Recommendations
 – Change bolt design so shoulder bottoms out on Grid instead of through the Flexure. This will
 – Random vibration environment commonly induces loads 2X or more higher than flight loads. Is a TKR acoustic test feasible?

• Further Work