Hardware Failure Impacts
Exercises
S. Ritz
Issues

• Recent results from design reliability analysis (system engineering, Thurston et al.)
• Probabilities aside, no single point failure may cause us not to meet our science requirements.
• There are single failure points that will have an impact on LAT capabilities, most notably loss of a full tower from a non-redundant TEM part failure.
Requirements

• There are requirements on peak effective area (>8000 cm²), FOV (really Aeff(θ)) >2sr, and lifetime (>5 years with <20% degradation).

 - Other performance parameters (e.g., PSF, energy resolution) can be traded against Aeff.

• Interpret <20% degradation at 5 years as applying to Aeff and FOV, for clarity. We take these degradations relative to the requirements, not to our nominal performance (so, we have additional margin).

• Requirements aside, what is our judgment?
Studies

- Already studied loss of an ACD tile.
- Loss of a TKR layer in one tower on trigger efficiency (D. Wren, thanks to tools provided by Leon), 1 GeV on-axis gammas:
 - thick converter layer (#0): ~0.6% reduction
 - thin converter layer (#8): <0.1% reduction
- Loss of a TKR tower (#6, core) on triggered Aeff:
 - 1 GeV normal incidence: 6% loss
 - 1 GeV 40° off axis: 4% loss
 - but what about FOV and background rejection?
LAT Has Three Tower Locations

Loss of a corner is not as bad as loss of an edge is not as bad as loss of a core.

Simplifying assumption: “tower loss” means both CAL and TKR. ACD is still intact.
Loss of corner tower

- easiest case to estimate
- A_{eff} loss $\sim 10\%$
- FOV loss very small.

Good experimental handle on-orbit: can pretend any other working corner tower is off and check for incremental background leakage and other systematic effects.
Loss of single edge tower

- Corner closest to dead edge tower also significantly impacted FOV. For purposes of conservative estimate, assume only 3x4 LAT left.
- Aeff loss ~25%
- FOV loss ~10%.

Good experimental handle on-orbit: can pretend any other working edge tower is off and check for incremental background leakage and other systematic effects.
Loss of single core tower

- most difficult (and painful) case. For purposes of conservative estimate, assume whole quadrant compromised. Looks like 2 LATs, each 1x2, with overlap.

- $\text{Aeff loss } \sim 25\%$
- $\text{FOV loss } \sim 15\%$. ($\sim 35\%$ loss in 1-dim in the bottom left and top right quadrants)

Good experimental handle on-orbit: can pretend any corresponding tower is off and check for incremental background leakage and other systematic effects.
Summary and Next Steps

- Seems OK…but not pleasant!
- Is this estimate sensible?
- Must do full background rejection analysis with core tower off. Can do this as part of the upcoming studies at each stage to get early warning of surprises.
- Think through onboard implications.
- Difficult to predict true impacts, since any real failure will cause all of us to find clever workarounds.