Using Insightful Miner Trees for Glast Analysis

Toby Burnett
Analysis Meeting
2 June 2003
The problem

• Bill is using IM classification and regression tree analysis to achieve very good PSF results
• IM is proprietary, and very expensive
Bill’s IM worksheet (PSFAnalysis_14)

Input tuple

Training region

Analyze results
The Trees: calculate 4 values with 11 nodes

- Good calorimeter measurement [1 node]
- vertex vs. 1 track (thin and thick) [2 nodes]
- Core vs tail (thin/thick and vtx/1 trk) [4 nodes]
- Prediction of recon direction error [4 nodes]

Example: A Good CAL/Bad Cal prediction node

CalTwrEdge<48.48,
CalTrackDoca<10.27,
CalTwrEdge>=26.58,
CalTwrEdge<34.81,
CalXtalRatio<0.82,
CalTransRms>3,611.48,
CalTrackDoca>3.96,
CalXtalRatio<0.46,
CalTotSumCorr>1.76
Bill’s result*

*Flawed by G4 problems

100 MeV, with tail cuts and best estimate

*Flawed by G4 problems
A Solution

• IM saves its results as XML files, which are easy to interpret

• A new package, “classification” defines a class `classification::Tree` that does the following:
 – accepts a “lookup” object to obtain a pointer to the value associated with named quantities
 – parses the XML file, creating a tree structure for each prediction tree found
 – for a given event, returns a value from each tree

• Merit creates and fills the new tuple variables, in a new class `ClassificationTree`.
 – duplicates the logic defining the 4 categories
 – evaluates each of the 4 variables
Current Procedure

- Bill releases an IM file.
- I strip it down, removing nodes not required for analysis
 - size reduced by 1/2, to 500 Kb.
- Rename it, and check it in to cvs as `classification/xml/PSF_Analysis.xml`
- Create a tuple with merit, containing the new tuple quantities
- Feed that tuple to this IM worksheet, which writes a new tuple with both versions of the same variables
Results: the good

- The comparisons were with 10000 generated 100 MeV normal
- The vertex classification (used to select vertex vs. 1 Track direction estimate) is perfect, as is the core vs. tail
Results: the bad

- The results of the “regression tree” to predict the psf error has two populations!
- The agreement is rather poor for the “thin vertex” category; otherwise perfect.

An explanation: Bill generated two different trees from different data sets, of 1000, and 243 events. (The latter has only two nodes and can only generate 3 values.)
 - The merit evaluation is only the first tree
 - The IM evaluation uses an average of the two trees.
 - Note that there are three branches.
Results: the ugly

- This is the comparison of the prediction for good energy measurement
- Again, Bill created two trees, which are apparently being averaged.
Observations, plans?

• Two possibilities to fix the “disagreement”
 – Bill: train only one tree
 – me: average all the trees

• Using IM to train the classification or regression trees
 – The current procedure is exploratory
 – If we decide to use these trees in the final analysis, they must be trained systematically
 – Another possibility (idea from Tracy): use the classification/regression analysis in S-PLUS, which manages tree objects.
100 MeV analysis w/ merit analysis

- Example only: G4 5.0 is too flawed to take seriously
- Tail cuts are clearly effective