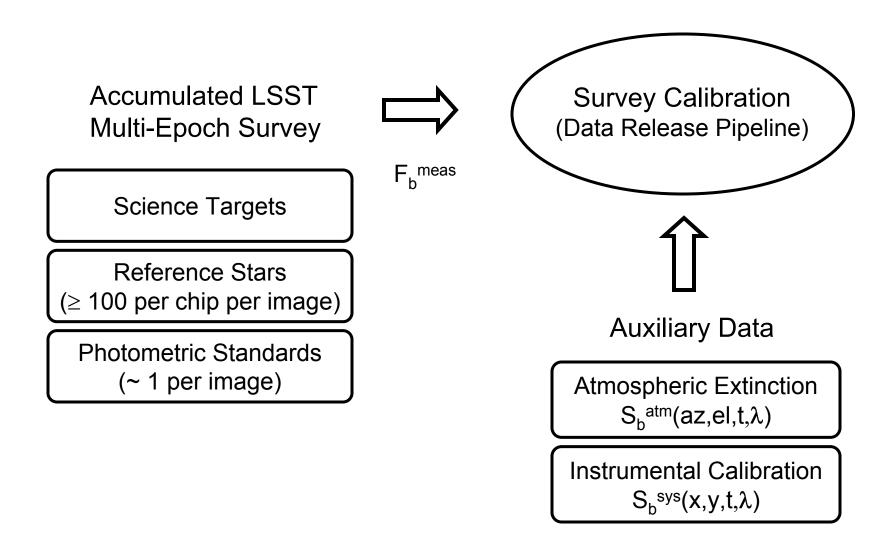


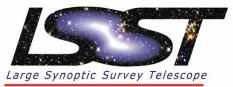
Camera Calibration

D. L. Burke SLAC Lead Scientist, LSST Calibrations

Project Manager's Camera Review SLAC, October 14, 2008

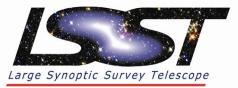
SRD Photometric Specifications




- Repeatability of measured flux over epochs 0.005 mag (rms)
- Internal zero-point uniformity for all stars across the sky 0.010 mag (rms) in *g*,*r*,*i*,*z*; 0.020 in other bands
- Transformations between internal photometric bands known to 0.005 mag (rms) in *g*,*r*,*i*,*z*; 0.010 to other bands
- Transformation to a physical scale with accuracy of 0.010 mag

LSST specifications are "factor of two" tighter than typically achieved. E. g. SDSS Sky Server catalogs internal relative calibrations to ~ 2%. Ivezic, et al. (2004).

Photometric Calibration Elements



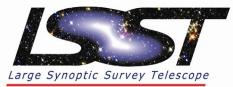
Design Specification	Repeatability (millimag)	Uniformity (millimag)	Color Accuracy (millimag)	
SRD (rms)	5	10	5	
Instrumental S _b ^{sys}	3	5	3	
Atmosphere S _b ^{atm}	3	5	3	
Image Process F _b ^{meas}	3	7	3	

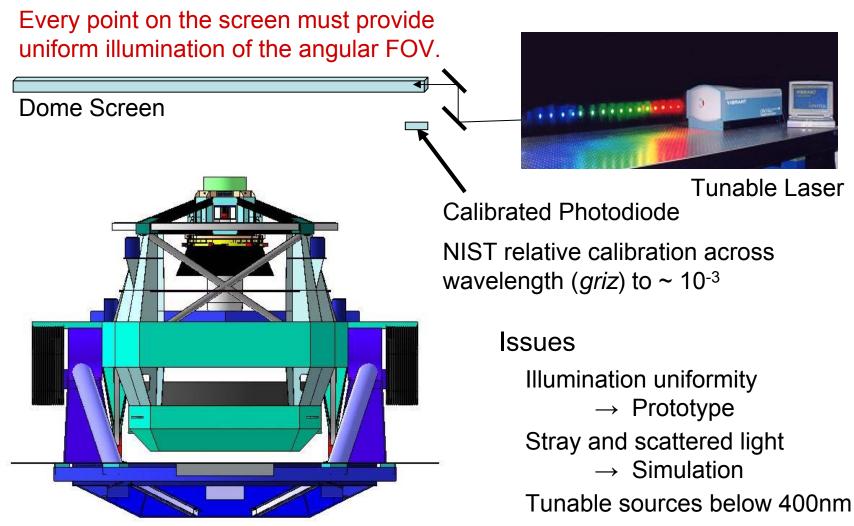
Telescope and Camera

Flowdown to Camera

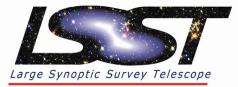
- Stability budget is 0.2% for <u>uncontrolled</u> variations in throughput.
 - (QE(t) CTE Gain(t)) stable to < 0.2% over times shorter than calibration cadences:
 - Dome screen beginning and end of each night
 - Sky standards every epoch (3-4 days)
- Uniformity budget is 0.35% for <u>uncontrolled</u> variations in throughput.
 - Relative $(QE(x,y) \bullet CTE \bullet Gain(x,y))$ controlled to < 0.25%.
 - Relative optics/filter transmission T(x,y) controlled to < 0.25%.

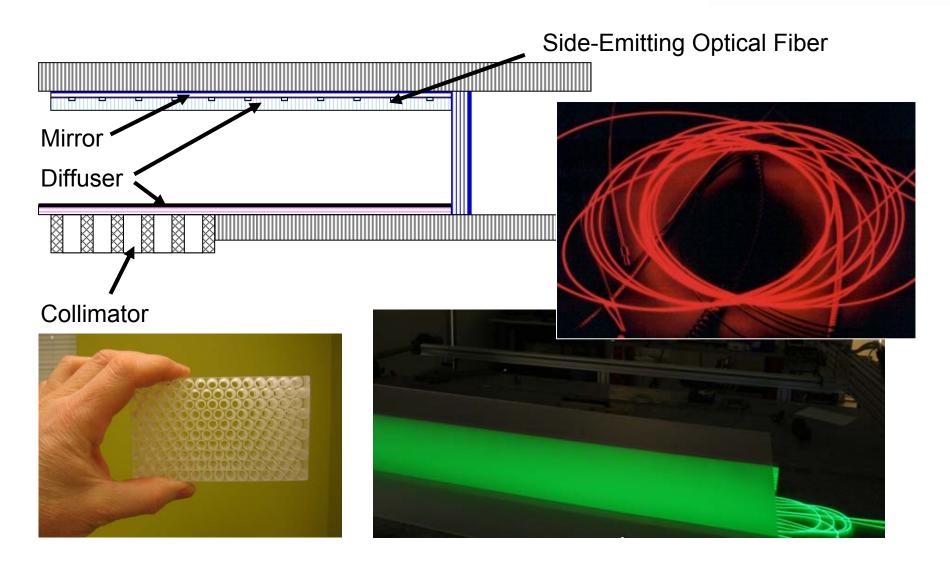
 \rightarrow The product of these two is what really matters.

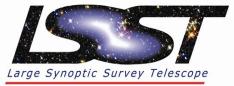

- Color zero-points budget is 0.2% for <u>uncontrolled</u> variations.
 - Measure relative $(T(\lambda) \bullet QE(\lambda))$ (over passbands) with error < 0.2%.


Camera Calibration Matrix

	Parameter		Summary Specification		Production	Raft	Camera I&T Dome/Sky	
					Tests	Tests	Calibration	Calibration
Sens	ors and E	Elex						
	QE(λ,X	.y)			Х	Х	Х	
	CTE(x)	/)			Х	Х	X	
	Gain(e-	(x,y) N	lon-linear < 3% Full Well		Х	Х		
	Full We	·	90000 e-		Х	Х	Х	Х
	Cross Talk		residual < 3 ₀ (sky)		S	S	×	??
	Fringe(λ)		< 5% (p2p)				XX	XX
	Dark C	urrent(x,y)	< 1 e-/s/pix		Х	Х	x	xx
		nic Noise	< 5 e- rms		Х	Х	X	xx
	Persist	ent Charge 🛛 🖸	< 0.02% Full Well (20 e-)		S	S	Х	Х
	Bad Pix	к Мар	<1% bad pix		Х	XX	XX	XX
	Therma	al Variation				Х	×	
Throu	lahput an	d Scattered Light						
	Optics/Filters T(λ,x,y)				х			
	$T(\lambda, x, y) QE(\lambda, x, y)$		0.25% rel meas error				??	
	CTE Gain(e, x,y)		0.25% rel meas error				×	??
		hput (λ,e-,x,y)	0.35% rel meas error				×	
		ed Light (λ,x,y)	< 3% model error	(TI	PC)		XX	
Key:	x Acceptance value							
	🛛 🛛 🗠 Calibration value							
	S	sample test only						


Instrumental Optical Calibration




Harvard (Stubbs)

Embedded Fiber Prototype

Project Manager's Camera Review SLAC, October 14, 2008

Purpose: Establish camera photometric performance before integration with telescope.

- Determine fixed operating parameters.
- Determine system response times.
- Determine spatial uniformity and camera "flats".
- Measure chromatic bandpasses.
- Validate ghosting (scattered light) model.
- \rightarrow Separate camera and telescope performance.

When ...

Camera is completed and sitting in SLAC assembly room. Electronics and DAQ working. Peripherals (shutter, filters, etc) in place and working.

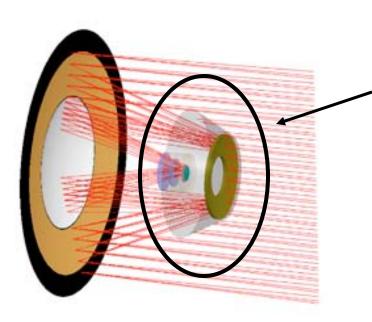
Goal

Verify we are ready to ship the Camera to the mountain.

Method

Run the camera as if it were taking data on the telescope!

 \rightarrow Camera Calibration Optical Bench


Images to Record and Analyze Bias frames. Darks (long and short). Calibration Images

Barrau, et al.

ZEMAX Model Calculations

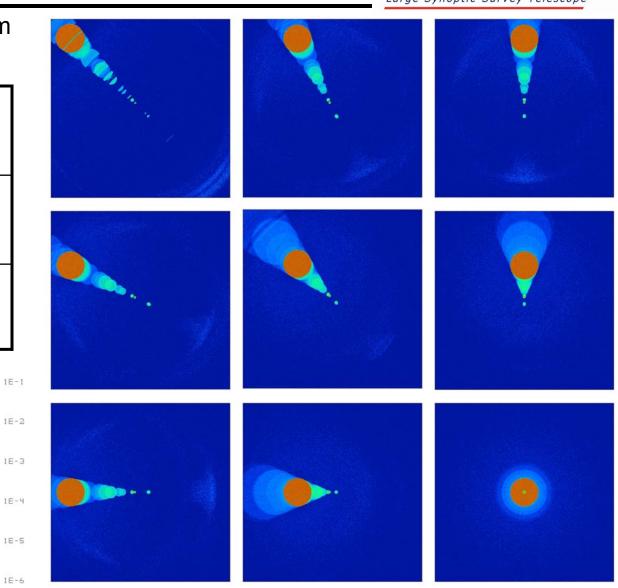
- Consider only the camera
 - Three lenses
 - Filter
 - CCD surface
- LSST non-sequential
 ZEMAX model

Bechtol, Scacco, and Sonnenfeld

"Headlight" Beam

Large Synoptic Survey Telescope

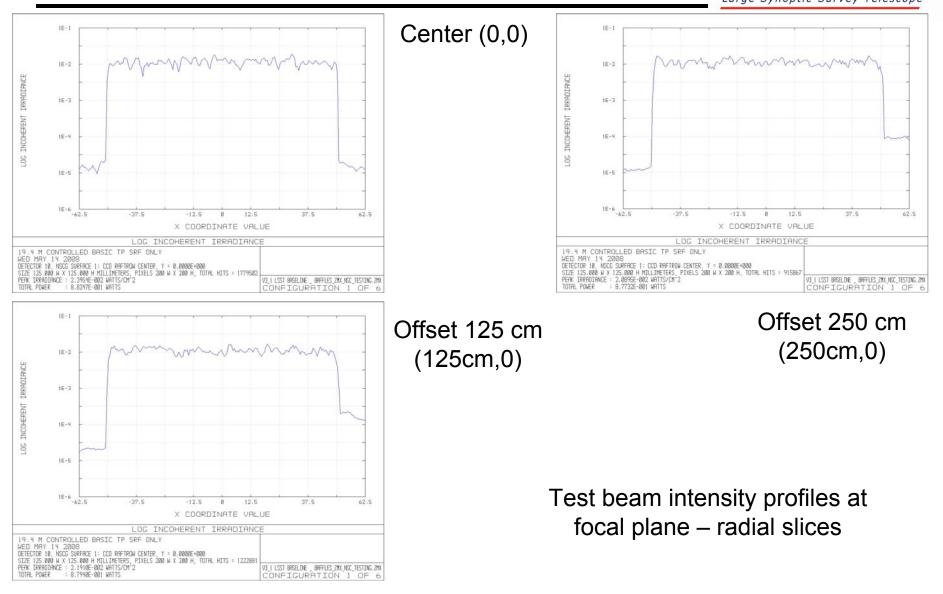
Center 10 cm diameter beam over a grid of positions (250, 250)(125, 250)(0, 250)


(250,125) (125,125) (0,125) (250,0)(150,0)(0,0)

> **Beam Positions** (cm)

1E-1

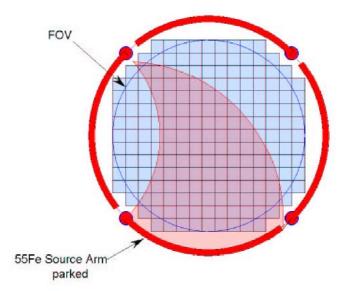
1E-6


Incoherent irradiance (W / cm^2)

Project Manager's Camera Review SLAC, October 14, 2008

Beam Profiles at Focal Plane

Large Synoptic Survey Telescope



Considered implementation of an *insitu* x-ray system.

Rejected in favor of a temporary "L3" source plate to be used during I&T (and perhaps later at the observatory as needed for recovery after maintenance).

Fixed and shuttered ⁵⁵Fe sources on the CCD (cold) side of a plate that replaces L3.

Activity and spacing of sources to provide ~ 10^3 hits per amplifier readout per 15 sec exposure.

No mechanical design yet.