

Andrew Rasmussen, KIPAC/SLAC

- LSST camera's focal plane (FP) is formed out of 21 science rafts (189 science sensors) and 4 corner rafts (8 guide sensors, 8 WF sensors) mounted a rigid and stable optical bench (GRID)
- Efficient I&T favors a parallelized, hierarchical and modular design: identical sensors assembled onto identical rafts, and identical rafts mounted onto the GRID, prepared to feature a coplanar arrangement of Kinematic Coupling parts when cold and under representative load
- Compared to alternative scenarios, this approach shifts workload between raft production (BNL) and FP integration (SLAC) – but will reduce handling at a time when exposure should be minimized

The main issues

- Imaging performance in the face of wide field, fast optical beam ($\Omega \sim 10^{-1}$; F/1.2)
- PSF shape control in a slightly astigmatic and vignetted beam formed by optics actively compensated for environmentally induced deformations
- Adopted FP non-flatness allowance is 10 μ m P-V: Equal to pixel size and smaller than 100 μ m baseline sensor thickness
- Error budget for the focal plane includes terms at various scales (sensor, raft, focal plane) as well as dynamical terms. The P-V allocation is considered a placeholder, and will be replaced with a more realistic distribution function
- Current baseline flatness limits: Sensor \rightarrow Raft \rightarrow Focal Plane:: 5.0 $\mu m \rightarrow 6.5 \mu m \rightarrow 8.5 \mu m$

Current, Hierarchical FP flatness error budget (2006, Layton Hale, LLNL)

	Component	Error Source	Comment	PV/RMS	PV	RMS	±2 σ	±3 σ	1		
	Focal Plane Array	Total: 1, 2, 3, 4, 5, 6		14.90	24.55	1.65	6.59	9.89	l		
1	Sensor	Subtotal: 1.1 - 1.6		5.61	6.30	1 12	4 49	6 74			
11		Manufacturing tolerance		4.50	5.00	1 1 1	4.40	0.74	1		sansor
12		120° C cool down		4 50	0.50	0.11			1)	3011301
1.3		Mounting influence		4.50	0.50	0.11			1		
1.4		Heat load		4.50	0.10	0.02			1 1		
1.5		Changing gravity vector		4.50	0.10	0.02					
1.6		Long-term stability		4.50	0.10	0.02					
2	Adjustable sensor mount	Subtotal: 2.1 - 2.5		7.54	2.60	0.34	1.38	2.07	·		(adi) sonsor
2.1		Adjustment increment		3.85	1.00	0.26					(auj.) sensoi
2.2		Measurement uncertainty		3.85	0.50	0.13			1)	mount
2.3		120º C cool down	Variation among mounts	3.85	0.50	0.13			1		
2.4		Changing gravity vector	Variation among mounts	3.85	0.10	0.03					
2.5		Long-term stability	Variation among mounts	3.85	0.50	0.13					
3	Raft plate	Subtotal: 3.1 - 3.4		8.03	2.20	0.27	1.10	1.64	<u> </u>		
3.1		120º C cool down	Repeatability	4.50	0.10	0.02			1		Raft Plate
3.2		Mounting influence	·····	4.50	0.50	0.11			1)	
3.3		Changing gravity vector		4.50	0.50	0.11			1		
3.4		Long-term stability		4.50	0.10	0.02					
3.4		Field curvature	Flat-plate approximation	4.50	1.00	0.22					
4	Kinematic raft mount	Subtotal: 4.1 - 4.7		9.73	4.00	0.41	1.64	2.47	·		
4.1		Adjustment increment		3.85	0.50	0.13			1		Kinematic mount
4.2		Measurement uncertainty		3.85	0.50	0.13			1)	(Doft)
4.3		Repeatability		3.85	1.00	0.26			1		(המוו)
4.4		Variation w.r.t. master	Ball size, vee geom., etc.	3.85	0.50	0.13					
4.5		120º C cool down	Variation among mounts	3.85	0.50	0.13					
4.6		Changing gravity vector	Variation among mounts	3.85	0.50	0.13					
4.7		Long-term stability	Variation among mounts	3.85	0.50	0.13					
5	Grid	Subtotal: 5.1 - 5.5		10.06	1.25	0.12	0.50	0.75			Grid
5.1		120º C cool down	Repeatability	4.50	0.25	0.06			1)	U
5.2		Changing gravity vector		4.50	0.25	0.06			1		
5.3		Raft/mount loads	Correction error	4.50	0.25	0.06					
5.4		Heat loads		4.50	0.25	0.06					
5.5		Long-term stability		4.50	0.25	0.06					
6	Dynamic errors	Subtotal: 6.1 - 6.6		7.91	8.20	1.04	4.15	6.22	·		
6.1		X-Y-0 motion flexures	Geometric error motion	3.85	0.20	0.05			1		Dynamical errors
6.2		WFS measurement noise	Assume curvature sensors	4.50	2.00	0.44			l)	= ,
6.3		Image-to-FPA vibration	Wind shake, step & settle	2.82	1.00	0.35			l		
6.4		Hexapod least increment	· · ·	3.46	2.00	0.58					
6.5		Rotator error motion	Bearing noise	3.46	1.00	0.29					
6.6		Calibration to the sky	Thru-focus step test	3.46	2.00	0.58					
									i de la companya de l		

Table 1 Focal-plane-array error budget. All errors are in units of micrometers (0.001 mm).

LSST Camera Review

A "realistic" (?) LSST_FP: hierarchical/modular design

y[mm]

Metrology of individual sensors (e.g. Fizeau interferograms)

- Development of Metrology tools, methodology and plans for building a ~850mm diameter FP using ~200 sensors that will have 10µm P-V flatness under operational conditions
- Materials and surface finish quality selection for kinematic mount (KM) components to improve repeatability, minimize wear associated with environmental cycling in the cryostat, etc

Kinematic Mount (KM) testing using a "raft prototype"

Characterize components (establish wear-in cycle and resulting stability for candidate mounting hardware: 6 constraint mount, maximally compliant to thermally induced differential expansion..

Goals:

Guide materials choice, surface finish/coating that minimize impact, static load and frictional wear – which can frustrate coalignment efforts across sensors and rafts in LSST focal plane.

Main features of our approach:

- Non-contact surface metrology of a finite element surface (interferometry may be appropriate for sensor flatness screening)
- Differential metrology (against a reference) combined with stitching obviates tight temperature control or space requirements to host a CMM
- Rapid feedback scans are performed over times shorter than thermal time scales, and covering just a fraction of FP at a time
- Through lens (L3 or vacuum barrier) inspection for FP metrology under representative conditions (T ~ -100°C, varying gravity load)

Testing facility for KM studies (a *thermo-vac*/metrology facility bearing minor resemblance to LSST camera)

> Raft/Prototype to test kinematic mount components under representative conditions

Differential displacement sensor metrology robot & thermal/vac sample holder

Sample data obtained in the KM-RP thermo-vac/metro facility

Established measurement precision: repeatability

- Representative conditions for measurement (thru-window, under vacuum)
- Distributions of fiducial z-height pair difference measurements performed by referencing off of an opposing optical flat ("differential non-contact metrology")
- Measurement samples were inside an evacuated vacuum chamber at room temperature; 25mm from a 34mm thick double sided optical flat vacuum barrier (e.g., "L3")
- Shown are 3 surface height difference distributions, performed 25 times each over 8 hours (6 minutes/scan, producing $<\sigma(\Delta z)>$ ~ 0.22µm) [$<\sigma>\sim$ 0.27µm @3min/scan]

- Demonstration of expected "stitched" figure measurement errors, using a stitching algorithm together with representative measurement errors
- FWHM(z) ~ 0.5 μm , 1000 points acquired in 1000 seconds in a single sample
- "Imprint" of sampling function is seen in the resulting stitched figure
- Amplitude of imprint is nearly identical to error distribution assumed initially

Stitching for FP Metrology

x10⁻⁴

4.0

2.0

200

Tuesday, Oct. 14, 2008

001

200

0

200

400

coordinate [mm]

LSST Camera Review

coordinate X [mm]

150

Stitching algorithm, using apparent differential metrology error distribution

=> Should work fine for measuring environmental grid distortion and initial ball arrangement

- R&D activities address specific needs for integration and testing of the assembled FP
 - Development of tools and methodology for acquiring feedback in a rapid fashion during integration
 - Tested means for measuring FP surfaces under representative conditions (through vacuum barrier).
 Typically ~250 nm repeatability is achieved for this
 - Materials and surface preparations are still under investigation in attempt to minimize differential wear and to formulate an environmental exposure budget

• None