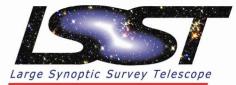


Goals and Plans for Camera I&T Calibration

D. L. Burke SLAC

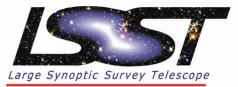
LSST Camera F2F SLAC, September 16-19, 2008



- Review Camera I&T calibration goals, specifications, and tasks.
- Identify I&T calibration technical issues.
- Identify I&T calibration data management issues.
- Identify work to be done for PDR/CD-1.

Purpose: Establish camera photometric performance before integration with telescope.

- Determine fixed operating parameters.
- Determine system response times.
- Determine spatial uniformity and camera "flats".
- Measure chromatic bandpasses.
- Validate ghosting (scattered light) model.



SRD Photometric Design Specs	Repeatability of measured magnitudes of bright sources.	Uniformity across the sky of the internal zero-point for bright and faint sources.	-	
Overall Specification	5 <u>millimag</u>	10 millimag	5 <u>millimag</u>	
Instrumental (A) Calibration	3 millimag	5 millimag	3 millimag	
Atmospheric Characterization	4 millimag	5 millimag	3 millimag	
Images, Grids, and Algorithms (<u>incl</u> Verification)	2 millimag	7 millimag	3 millimag	

(A) Combined telescope and camera.

NOTE: 1 millimag $\approx 0.1\%$

Flowdown to Camera

- Stability budget is 0.2% for uncontrolled variations in throughput.
 - (QE CTE Gain) stable to < 0.2% over times shorter than calibration cadences:
 - Dome screen beginning and end of each night
 - Sky standards every epoch (3-4 days)
- Uniformity budget is 0.35% for uncontrolled variations in throughput.
 - Relative $(QE(x,y) \bullet CTE \bullet Gain(x,y))$ controlled to < 0.25%.
 - Relative optics/filter transmission T(x,y) controlled to < 0.25%.

 \rightarrow The product of these two is what really matters.

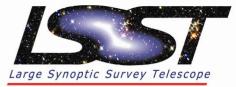
- Color zero-points budget is 0.2%
 - Measure relative $(T(\lambda) \bullet QE(\lambda))$ (over passbands) with error < 0.2%.

Camera Calibration Matrix

							/	
			LSST Camera (Calibr	ation Matri	х		
	Parame	eter	Summary Specification	P	roduction	Raft	Camera	Dome/Sk
					Tests	Tests	Calibration	
Sensor	s and Elex							
	$QE(\lambda, x, y)$				Х	↑		
	CTE(x,y)				Х			
	Gain(e-,x,	y) N	on-linear < 3% Full Well		Х			
	Full Well		90000 e-		Х			
	Cross Tall	<	residual < $3\sigma(sky)$		XX		??	??
	Fringe(λ)		< 5% (p2p)		Х		XX	ХХ
	Dark Curre	ent	< 1 e-/s/pix		Х	2	XX	ХХ
	Electronic	Noise	< 5 e- rms		Х		XX	ХХ
	Persistent	Charge <	0.02% Full Well (20 e-)		Х			
	Bad Pix M	1ap	<1% bad pix		х		XX	XX
Throug	hput and Sc	attered Light						
		ters T(λ,x,y)	0.25% rel meas error		Х		??	
	QE(λ,x,y)·	CTE G(e-,x,y)	0.25% rel meas error				??	??
	Throughpu	it (λ,e-,x,y)	0.35% rel meas error				XX	
	Scattered	Light (λ,x,y)	< 3% model error	(TPC)	•	XX	
Key:	X	Acceptance v	value					
	ХХ	Calibration value				Comple	ete this f	

When ...

Camera is completed and sitting in SLAC assembly room. Electronics and DAQ working. Peripherals (shutter, filters, etc) in place and working.


Goal

Verify we are ready to ship the Camera to the mountain.

Method

Run the camera as if it were taking data on the telescope!

Images to Record and Analyze Bias frames. Darks (long and short). Calibration Images

- Flat Screen "Plane Wave Surrogate"
 - Not particularly useful without optical beam from the telescope.
- Preliminary Studies of Optical Calibration Configurations
 - Andy Scacco and Allesandro Sonnenfeld
 - Keith Bechtol (presentation later)
- Camera Calibration Optical Bench

» Aurelien Barrau and Alexia Gorecki

Need concept and preliminary design for PDR.