

Sensors and Raft Tower Modules

Jim Frank, Anand Kandasamy, Ivan Kotov, Petr Kubanek*, Paul O'Connor, Michael Prouza, Veljko Radeka, S. Plate, Peter Takacs**

•** IAA-CSIC Granada*

•*** Charles Univ. Prague*

Outline

•**Sensor Prototype contracts**

– *Scope, deliverables, and schedule*

•**Sensors experimental program**

- *BNL test facilities*
- *Results on study contract devices*
- *Development of CCD Qualification Test*
- *R&D Plans*

• **Raft Tower Module (RTM)**

- –*Design changes since CoDR*
- *Metrology studies*
- *R&D Plans*

•**Integration and Test**

– *R&D Plans*

•**Timelines**

- *R&D*
- *Production*

Sensor development plan

•**Technology study**

- *understand and model device characteristics*
- *engage qualified vendors*
- *address the most pressing technical challenges early*
- –*establish test lab at BNL*

•**Prototype**

- –*multivendor competition*
- –*fabricate sensor meeting all LSST specifications*
- –*demonstrate yield and quality control*
- –*ramp up test capability within LSST collaborating institutions*

•**Production**

- *manufacture, test, and deliver 200+ science-grade sensors*
- *24-month production period*
- *single- or dual-source*

Prototype Sensor Development Plan

- • **Sensor prototype development funded by private donations through LSSTC**
- • **Requested 2-year proposals for full-spec LSST sensors:**
	- all optical, electrical, mechanical requirements met
	- –at least 2 operable samples delivered
	- –production plan
	- manufacturability demonstration
	- optional deliverables:
		- •proposal to deliver fully-assembled production rafts
		- •wavefront sensor design report
- • **Two of four bidders awarded for a total of \$2.4M:**
	- \equiv ρ 2V
	- Univ. of Arizona ITL
	- (both participated in sensor study contract phase)
- • **Supplemental funding being sought to complete both vendors' proposed scope (and add a third qualified vendor?)**

RFP for prototypes

- •**Provided LSST project background, emphasizing focal plane concept.**
- •**Presented sensor reference design and requirements table.**
- • **Named organizational contacts:**
	- *LSSTC Project Manager and sensor contracts coordinator (D. Sweeney)*
	- *LSSTC Contracts Officer (D. Calabrese)*
	- *Sensor working group technical leads (V. Radeka, P. O'Connor)*
	- *LSST Project Director (T. Tyson)*
- • **Requested 7 required deliverables:**
	- *1. CCD design report*
	- *2. Package design report*
	- *3. Mechanical package model*
	- *4. First operable lot prototypes & test reports*
	- *5. Interim Review*
	- *6. Yield & reproducibility demonstration (2 additional lots)*
	- *7. Final review including production plan*
- • **Two optional deliverables:**
	- *1. Assembled raft baseplate design and production plan*
	- *2. Curvature wavefront sensor design*
- •**Suggested schedule of deliverables**
- •**Eligibility and award selection criteria**

•**Evaluation team selected by Don Sweeney:**

- *J. Geary*
- *K. Gilmore*
- *P. O'Connor, chair*
- *V. Radeka*
- *T. Tyson*
- *V. Krabbendam, D. Sweeney (*ex officio*)*
- **RFP issued Feb. 4, 2008**
- •**Clarification telecon w/vendors Feb. 29**
- •**Proposals received by May 7**
- \bullet **Evaluation committee met June 9-10 and issued recommendation memo to LSSTC**
- \bullet **Revised proposals received from awardees**
- \bullet **Formal contracts drafted**
- •**Contracts signed Oct. ??**

Scope of work

•**e2v**

- *all seven required deliverables*
- –*reduce quantity of mechanical samples*
- –*omit commissioning some production equipment*
- –*scale back manufacturability demo to one lot (require more contingency in production contract)*
- –*supplemental funding of \$0.4M needed to recover full scope by 2010*
- • **ITL**
	- *package development is emphasized (ITL has already delivered working 4K x 4K devices in study phase)*
	- – *deliver packaged samples of study contract devices only (won't meet LSST specs in several areas).*
	- –*no CCD redesign and no manufacturability demonstration*
	- –*performance period reduced to 1 year*
	- –*recovery of full scope needs additional \$1.1M*

•**Wavefront sensor development remains unfunded**

Chart removed for public distribution

sensitive – not to be distributed outside collaboration

Sensors Experimental Program at BNL

- **Understand behavior of thick fully depleted CCDs**
- \bullet **Study sources of intra- and inter-chip variability**
- \bullet **Develop qualification test for production sensors:**
	- –*instrumentation and data collection*
	- *calibration*
	- –*algorithms*
	- *database*

BNL Test Facilities – Bldg. 535

Purpose-built test equipment

- **CCD controller**
- **Point projector**
- •**Fringe projector**
- •**In-cryostat xray source swing arm**
- •**LN2 autofill**

- **Five operable devices delivered**
- **Two mechanical samples**
- **100, 150**μ**m thick**
- •**single, two-stage amplifiers**
- **Format: 2K x 0.5K, 2K x 4.5K (col. x row)**
- **13.5**μ**m pixels**
- **"first-generation" high-rho CCDs:**
	- –*backside illuminated*
	- *biased, conductive window*
	- –*no separate frontside substrate contact* Æ *high noise*
- **Results have been presented at 5/08 AHM, SPIE 6/08 meeting**

Dark current and defects

Normalized flatfield response vs. wavelength

 10

 10

o oa

LSST Camera Workshop SLAC Sept. 16 - 19, 2008 $_{;ope}$

LSST Camera Workshop SLAC Sept. 16 - 19, 2008

Linearity

Two methods of Xray cluster analysis

small section of xray image

gain from 'sextractor' vs gain from 'root'

- *subtract bias frame*
- *identify clusters*
- *sum flux in cluster*
- *find conversion gain from known charge generated by 55Fe K*^α*, K*β *photons*

LSST Camera Workshop SLAC Sept. 16 - 19, 2008

Sextractor version

Large Synoptic Survey Telescope

CTE: 200808 data set, device 106-07, T=-140C

initial distribution

after correction

X direction, serial transfer CTE=0.999911

Y direction, parallel transfer CTE=0.999996

Charge Transfer Efficiency (Inefficiency)

CTE from slope of 55Fe peak vs. no. pixels shifted

Charge transfer efficiency vs. temperature

Model

- •**High field effects important at our electric field**
- • **Drift time increase due to velocity saturation**
	- –*substantially increases diffusion*
	- –*effects hole transport differently than electrons*
- **Possible suppression of transverse diffusion coefficient at high fields**
	- –*reduces diffusion, countering velocity saturation effect*
- **Possible non-uniform doping of high-rho silicon near entrance window**
	- –*would leave thin undepleted, field-free region, leading to high diffusion*
- **Not easy to distinguish experimentally**

- **Virtual Knife Edge method**
	- –*project small spot on detector, scan spot, calculate flux in virtual box*
	- –*differentiate to get PSF*
- **Modulation transfer function method**
	- –*project sinewave pattern on detector, measure contrast vs. spatial frequency*
- **Xray method**
	- –*analyze distribution of xray cluster size, fit to PSF model*
- • **Cosmic ray method**
	- –*oblique-incident cosmic muons leave long track*
	- –*track width on detector is indication of diffusion as function of depth*
	- –*estimate diffusion vs. depth from track width (compare simulation)*

Camera requirement: $0.^{"}25$ FWHM = $5.30 \mu m$

Data QA plots

monitor track of temperature, noise and offset in overscan image region during overnight data taking runs

LSST Camera Workshop SLAC Sept. 16 - 19, 2008

study deliverable, 2K x 512, backside study study deliverable, 2K x 512, backside study deliverable, 2K x 4K, backside

Flatness: STA/ITL 4K x 4K study contract device Falls Express Telescope

Standard test procedure – CCDs (preliminary) *Page Synoptic Survey Telescop*

- •**Log device in**
- •**Transfer CCD from storage container to test cryostat**
- •**Vacuum**
- •**Apply bias and clocks observing required sequence**
- •**Cool down to operating temperature (don't exceed maximum dT/dt)**
- • **Start automated data taking script**
	- – *zero exposures bias subtraction, read noise*
		- *dark frames to 500s dark rate*
	- –*55Fe exposures conversion gain, CTE, PSF(?)*
	- *monochromatic flat fields QE, linearity, full well*
-
- • **Run data QA check**
	- *reject compromised data sets*
- •**Warm up Dewar, break vacuum, transfer CCD to clean storage**
- \bullet **Transfer fits files to cluster for analysis**
- •**Extract fits headers for image database**
- • **Run analysis scripts**
	- *image processing pipeline to extract standard report, check vs. requirements*
- •**Enter results in test database**

- •**Verify diffusion model and measurement**
- •**Evaluate STA/ITL study contract devices**
- •**Evaluate prototype devices**
- • **Complete 2nd generation test stand: new Dewar, controller, PSF** point projector, MTF fringe projector \rightarrow evolve to production **test stand**
- •**Design and procure production test hardware, facilities**
- •**Develop production test procedure, software, and database**
- • **Technical liason with vendors**
	- –*Electrical interface to FEE (w/UPenn)*
	- –*Mechanical/thermal interface to raft (w/SLAC, Purdue)*
	- –*WFS (pending availability of funding)*

Raft Tower Module (RTM) Design Modifications

Raft-tower design changes

select connectors for FEE-BEE and FEE-CCD

requires increased clearance at cryoplate interface, changed heat path

> LSST Camera Workshop SLAC Sept. 16 - 19, 2008

Revised design of raft-GRID hold-down (see cryostat a corner raft presentations) Large Synoptic Survey Telescope

- raft preload maintained constant during load transfer from Cage to GRID
- cryoplate no longer supports raft-GRID preload
- occupies more volume in bay

Beginning analysis of deflection under cabling point loadLarge Synoptic Survey Telescope

Poco SuperSiC raft Load case:1N at center bolt holemax. defl. 8.5nm

Raft Tower Module (RTM) Flatness metrology

Metrology samples

Float glass tiles, differential adjusters

Differential screw adjustor

2 versions designed and fabricated 50μm and 60μm per turn

old system new 400mm system

Surface flatness of two material samples

0.65mm Si wafer, laser cut, CA glue to AlN ceramic

2.4mm float glass, epoxy to Al frame

Best achieved flatness

best fit plane to each tile (remove warpage)

LSST Camera Workshop SLAC Sept. 16 - 19, 2008

Aside -- Objet Eden 260 3D printer

Technical Specifications

Build size (X x Y x Z) 260mm x 260mm x 200mm (10.2 X 10.2 X 7.9 inches)

Print Resolution

X-axis: 600 dpi: 42 µ Y-axis: 300 dpi: 84 µ Z-axis: 1600 dpi: 16 µ

FullCure®840 VeroBlue

assemble pre-cabled CCDs to raft metrology scan

install housing sides 3 & 4 install housing sides 1 & 2

RTM Integration procedure (preliminary)

- • **Tooling and fixturing**
	- *raft metrology jig, height transfer standard, flatness standard, displacement sensor, gantry xyz stage, adjustment tooling, assembly fixture*
	- –*Dewar, Dewar mount, vacuum system, cryosystem, xray source carriage, control and readout electronics*
	- *Optical testbench: source, filters, monochromator, sphere, baffles, monitor photodiodes*
- • **Inventory of qualified components**
	- *CCDs, raft baseplates, mounting hardware, cage mechanics, FEBs, cooling straps, heaters, spring preload hardware, cables, MLI(?)*
- •**Serial numbering**
- •**Vacuum-prepare materials**
- •**Assemble CCDs to raft**
- •**Transfer to metrology jig, survey flatness and piston**
- •**Align as necessary (may require disassembly-reassembly)**
- •**Transfer to assembly fixture**
- • **Assemble FEBs, cooling planes, cooling straps, heaters, cage sides, spring preload mechanisms, MLI**
- •**Transfer RTM to metrology jig, verify flatness and piston**
- • **Transfer to cryo-metrology test station, evacuate, cooldown, apply power, run final verification test**
- •**Warm up, transfer tested RTM to shipping container**
- •**Prepare test report and update database**

- **Finalize design of science raft hold-down**
- \bullet **Evaluate need for molecular flow barrier**
- •**Evaluate candidate raft materials, vendors**
- **Fabricate and test raft prototype with dummy sensors**
- **Develop assembly tooling:**
	- *raft assembly jig*
	- *RTM assembly fixture*
	- *Cryo test stand for final test*
		- •mechanics, optics, xray, cryo, vacuum, electronics
- **Cleanroom preparation**
- •**Software: DAQ, analysis, database**

Timelines

R&D Timeline

Oct-08 Nov-08 Dec-08 Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09 Jan-10 Feb-10 Mar-10 Apr-10 May-10 Jun-10 Jul-10 Aug-10 Sep-10 Oct-10 Nov-10 Dec-10

BACKUPS

CfA camera controller

- • **provides clock and bias signals to operate the CCD(s).**
- • **receives video signals, digitizes to 16 bits, writes FITS file to Linux host over optical link.**
- •**4 channels per A/D board; up to 16 channels.**
- • **latest in a succession of camera controllers for ground and space astronomy projects (MMT Megacam, Kepler)**
- •**Clock rate limited to < 200kpix/s.**
- • **Clocking patterns not easy to modify.**
- •**Unavailability of schematics.**
- • **Noise contribution not accurately known, may be significant.**
- • **Preamp box hard-mounted to Dewar; need to break vacuum to service.**

- • **We asked Geary for a new controller able to evaluate LSST sensors (16 outputs) at full clock rate (500 kpix/s).**
- •**A new board set has been designed.**
- • **Boards are fabbed in IO PC shop. First boards delivered to CfA; still need to fab a couple more.**
- • **After debug, 5 copies of controller to be built for:**
	- *BNL (we are the guinea pig for the new design)*
	- *SLAC*
	- *Purdue*
	- *LPNHE*
	- *UC Davis*

Fast multichannel controller

Xray mechanisms for single 4K^2 and fully populated raft

xray "carriage" for raft

modified swing arm for 4K^2

153-pin vacuum feedthroughs

LINUX PC

4 methods of measuring PSF under study

VIRTUAL KNIFE EDGE

MODULATION TRANSFER FUNCTION

XRAY CLUSTER SIZE

wavelength

Methods

- • **Dark current + defects**
	- *36 bias frames; six 600s exposures*
- • **Xray transfer**
	- *36 bias frames; 49 exposures to ~5*μ*Ci 55Fe source*
- • **QE scan**
	- *25 bias frames; 17 flatfield exposures to monochromatic light 300-1100nm at 50nm intervals*
- • **Linearity**
	- *20 bias frames; 23 flatfields from dark to full well at 830nm*
- • **PSF**
	- *20 bias frames; focus point projector on CCD surface; scan in 2um steps for 10 pixels in x- and y-direction*
- • **Mechanical flatness**
	- *mount CCD on xy stage; measure z-height at 0.5 x 0.5mm grid*

LSST Camera Workshop SLAC Sept. 16 - 19, 2008 we have developed an automated script that performs these measurements and most of the analysis three temperatures and one bias setting requires about *6 hours* to run and generates *816 image files* we plan to add PSF measurement

Data reduction for QE

•**Flux determination:**

- *calibrated photodiode is placed behind precision aperture at the CCD location*
- –*second photodiode mounted in auxiliary port of integrating sphere*
- *measure photocurrent vs. wavelength in both diodes*
- –*check ratio for reproducibility*
- \equiv *also check irradiance pattern at CCD location*
- *use sphere PD for flux monitoring during QE scan of CCDE*

•**Gain determination:**

- *irradiate CCD with 5.9keV xrays from 55Fe source mounted inside Dewar*
- –*collect ~105 events from multiple exposures to avoid crowding*
- *use clustering algorithm to analyze xray hits to get xray spectrum*
- *fit spectrum to Mn K*^α *and K*β *peaks; determine peak ADU for each line*
- *convert peak ADU to gain using known xray energies and pair creation energy of silicon (temperature dependent)*
- •**Repeat for each temperature and bias setting**

Detail of electrical cabling and thermal straps **Figure Survey Telescope**

Electrical interface

Electrical interface

- •**CCD has 16 segments**
- •**all bond pads on 2 edges**
- •**parallel clocks driven from both ends**
- •**assume 2 flex pigtails from CCD**
- •flex cable length $\sim 6 - 9$ cm
- • **shielding needed for excellent crosstalk rejection**
- • **flex pinouts should be as similar as possible to allow FEE boards to be identical**
- • **each flex has individual segment OD, OS, and possibly OG,RD**
- •**one flex has serial clocks and reset gate**
- • **one flex has parallel clocks (requires bussing on package ceramic)**
- • **strawman flex pinout on next slide (for conceptual design purposes only)**

Strawman CCD pinout

Connector J1

Connector J2

PIII. KEF	Description	PIN. KD.	Description
1 _{OS0}	Output Source, segment 0	1 OS8	Output Source, segment 8
2 OG0	Output Gate, segment 0	2 OG8	Output Gate, segment 8
3 OD0	Output Drain, segment 0	3 OD8	Output Drain, segment 8
4 RD0	Reset Drain, segment 0	4 RD8	Reset Drain, segment 8
5 S1	Serial Clock Phase 1	5 P1	Parallel Clock Phase 1
6 OS1	Output Source, segment 1	6 OS9	Output Source, segment 9
7 OG1	Output Gate, segment 1	7 OG9	Output Gate, segment 9
8 OD1	Output Drain, segment 1	8 OD9	Output Drain, segment 9
9 RD1	Reset Drain, segment 1	9 RD9	Reset Drain, segment 9
10 S2	Serial Clock Phase 2	10 P2	Parallel Clock Phase 2
11 OS2	Output Source, segment 2	11 OS10	Output Source, segment 10
12 OG2	Output Gate, segment 2	12 OG10	Output Gate, segment 10
13 OD2	Output Drain, segment 2	13 OD10	Output Drain, segment 10
14 RD2	Reset Drain, segment 2	14 RD10	Reset Drain, segment 10
15 S3	Serial Clock Phase 3	15 P3	Parallel Clock Phase 3
16 OS3	Output Source, segment 3	16 OS11	Output Source, segment 11
17 OG3	Output Gate, segment 3	17 OG11	Output Gate, segment 11
18 OD3	Output Drain, segment 3	18 OD11	Output Drain, segment 11
19 RD3	Reset Drain, segment 3	19 RD11	Reset Drain, segment 11
20 SS	Substrate	20 P4	Parallel Clock Phase 4
21 OS4	Output Source, segment 4	21 OS12	Output Source, segment 12
22 OG4	Output Gate, segment 4	22 OG12	Output Gate, segment 12
23 OD4	Output Drain, segment 4	23 OD12	Output Drain, segment 12
24 RD4	Reset Drain, segment 4	24 RD12	Reset Drain, segment 12
25 RG	Reset Gate	25 GD	Guard Drain
26 OS5	Output Source, segment 5	26 OS13	Output Source, segment 13
27 OG5	Output Gate, segment 5	27 OG13	Output Gate, segment 13
28 OD5	Output Drain, segment 5	28 OD13	Output Drain, segment 13
29 RD5	Reset Drain, segment 5	29 RD13	Reset Drain, segment 13
30 TSFP	Temp Sense Force Positive	30 TSFM	Temp Sense Force Negative
31 OS6	Output Source, segment 6	31 OS14	Output Source, segment 14
32 OG6	Output Gate, segment 6	32 OG14	Output Gate, segment 14
33 OD6	Output Drain, segment 6	33 OD14	Output Drain, segment 14
34 RD6	Reset Drain, segment 6	34 RD14	Reset Drain, segment 14
35 TSMP	Temp Sense Measure Positive	35 TSMM	Temp Sense Measure Negative
36 OS7	Output Source, segment 7	36 OS15	Output Source, segment 15
37 OG7	Output Gate, segment 7	37 OG15	Output Gate, segment 15
38 OD7	Output Drain, segment 7	38 OD15	Output Drain, segment 15
39 RD7	Reset Drain, segment 7	39 RD15	Reset Drain, segment 15
		LSST Camera Workshop	

SLAC Sept. 16 - 19, 2008

- **Radiometry: factory-calibrated Hamamatsu photodiodes**
- **Wavelength: Hg, Xe arc lines**
- •**Temperature: factory-calibrated RTD's**
- •**Charge: 55Fe xrays conversion in Si**
- \bullet **Height: precision, low expansion optical parallel**

Diffusion

Model

- •**High field effects important at our electric field**
- • **Drift time increase due to velocity saturation**
	- *substantially increases diffusion*
	- *effects hole transport differently than electrons*
- **Possible suppression of transverse diffusion coefficient at high fields**
	- *reduces diffusion, countering velocity saturation effect*
- **Possible non-uniform doping of high-rho silicon near entrance window**
	- *would leave thin undepleted, field-free region, leading to high diffusion*
- **Not easy to distinguish experimentally**

- **Virtual Knife Edge method**
	- *project small spot on detector, scan spot, calculate flux in virtual box*
	- –*differentiate to get PSF*
- **Modulation transfer function method**
	- *project sinewave pattern on detector, measure contrast vs. spatial frequency*
- **Xray method**
	- *analyze distribution of xray cluster size, fit to PSF model*
- • **Cosmic ray method**
	- *oblique-incident cosmic muons leave long track*
	- *track width on detector is indication of diffusion as function of depth*
	- *estimate diffusion vs. depth from track width (compare simulation)*

Camera requirement: $0.^{"}25$ FWHM = $5.30 \mu m$

Point projector characterization

- •**Best image around +40µm position. Strehl = 0.112.**
- •**Model calculations look very much like the measurements with the SI 1280XV camera.**
- • **Although central image core is narrow, encircled energy indicates significant energy (65%) is outside the core in aberrated image vs. 18% for unaberrated image.**
- •**This energy is spread over a large, diffuse area.**
- •**Need to model how this image shape produces an observed spot on the sensor.**
- •**Can observed sensor PSF be corrected for a broadened source image?**
- • **Custom design required to produce a lens that is compensated for spherical aberration from the thick window.**

Diffusion vs. depth into silicon

Drift time: $\text{tdr}(z) := \frac{d^2}{2V \text{depl} \cdot \mu 0} \cdot \ln \left(\frac{u+1}{u-1+2\frac{z}{d}} \right) + \frac{d-z}{vs}$

Gaussian rms of charge cloud due to diffusion:

$$
\sigma d(tdr) := \sqrt{2D \cdot tdr}
$$

where

 $z =$ conversion depth

 $d =$ thickness of CCD (100 or 150um)

Vdepl = depletion voltage (28V for 100um, 35V for 150um)

u = overdepletion factor ≥ 2.4 for 50 – 70V bias of e2v devices

 $vs =$ saturated velocity of electrons = 10^7 cm/s

 μ 0 = low field drift mobility at 163K = 5800 cm²/V-s

 $D =$ transverse diffusion coefficient at $163K = 83$ cm²/s

Figure 1: drift time (red) in ns, PSF (blue) in microns rms vs. conversion depth in microns for 100um-thick, fully depleted CCD at 163K

Nonuniform doping fits VKE measurement for two thicknesses

SLAC Sept. 16 - 19, 2008

Fringe projector for MTF study

substrate reverse bias, V

Two 'typical' cosmic tracks @

-50V bias 0V bias

Entrance window

Diffusion PSF from xray analysis

npix distribution 100um device, -75V blue – measuredmagenta -- model, VS included yellow – model, VS + 0.8*DT

npix distribution 150um device, -75V blue – measuredmagenta -- model, VS incl. yellow – model, vs + 0.8*DT

surface PSF ~ 4.5um

VKE scan analysis

Sum the intensity in the region as the spot moves across the right edge.

This defines the virtual knife edge.

Each frame corresponds to Δx of 0.5 microns in object space.

Pixel size is 0.5736 µm in object space.

- \bullet **LSST science mission depends on a consistent stream of stable, homogeneous images**
- \bullet **The major source of variability of the camera will come from temperature variations, which affect:**
	- *sensor QE, dark current, responsivity, CTE, diffusion*
		- variations important for photometry and PSF stability
	- *electronics offset, gain, crosstalk*
	- *mechanical position of sensors*
- \bullet **Temperature stability of the camera depends on closely coordinated subsystems:**

$$
\sigma_{\perp} = \sqrt{2 D_{\perp} t_{dr}}
$$

$$
\sigma(v_s) / d = \left(2 \frac{kT}{q_e V_{op}}\right)^{1/2} \left[1 + \frac{\mu_0(T) \bar{E}}{v_s}\right]^{1/2} \left[\frac{D_{\perp}(E)}{D(0)}\right]^{1/2}
$$

- We have performed a detailed analysis of earrier transport in the region where the mobility decreases due to velocity saturation and find the following:
- 1. There is an **increase** in the diffusion due to a longer carrier drift time than expected in the constant mobility case;
- 2. There is a **decrease** in the (transverse) diffusion coefficient due to the streamlining effect of the electric field on the carriers in random+drift motion .
- The two opposing effects result in a net diffusion increase factor of ~ 1.15 for electrons (p-substrate sensors), and **~ 1.32** for holes (n-substrate), at 173k and 5kV/cm.
- This analysis provides a close fit to the PSF measurement results obtained with the LBL CCDs, and with the Pan-STARRS CCDs.