

Sensors and Raft Tower Modules

Jim Frank, Anand Kandasamy, Ivan Kotov, Petr Kubanek*, <u>Paul O'Connor</u>, Michael Prouza**, Veljko Radeka, S. Plate, Peter Takacs

•* IAA-CSIC Granada

•** Charles Univ. Prague

Outline

Sensor Prototype contracts

- Scope, deliverables, and schedule

Sensors experimental program

- BNL test facilities
- Results on study contract devices
- Development of CCD Qualification Test
- R&D Plans

• Raft Tower Module (RTM)

- Design changes since CoDR
- Metrology studies
- R&D Plans

Integration and Test

- R&D Plans

• Timelines

- *R&D*
- Production

Sensor development plan

Technology study

- understand and model device characteristics
- engage qualified vendors
- address the most pressing technical challenges early
- establish test lab at BNL

Prototype

- multivendor competition
- fabricate sensor meeting all LSST specifications
- demonstrate yield and quality control
- ramp up test capability within LSST collaborating institutions

• Production

- manufacture, test, and deliver 200+ science-grade sensors
- 24-month production period
- single- or dual-source

Prototype Sensor Development Plan

- Sensor prototype development funded by private donations through LSSTC
- Requested 2-year proposals for full-spec LSST sensors:
 - all optical, electrical, mechanical requirements met
 - at least 2 operable samples delivered
 - production plan
 - manufacturability demonstration
 - optional deliverables:
 - proposal to deliver fully-assembled production rafts
 - wavefront sensor design report
- Two of four bidders awarded for a total of \$2.4M:
 - e2V
 - Univ. of Arizona ITL
 - (both participated in sensor study contract phase)
- Supplemental funding being sought to complete both vendors' proposed scope (and add a third qualified vendor?)

RFP for prototypes

- Provided LSST project background, emphasizing focal plane concept.
- Presented sensor reference design and requirements table.
- Named organizational contacts:
 - LSSTC Project Manager and sensor contracts coordinator (D. Sweeney)
 - LSSTC Contracts Officer (D. Calabrese)
 - Sensor working group technical leads (V. Radeka, P. O'Connor)
 - LSST Project Director (T. Tyson)
- Requested 7 required deliverables:
 - 1. CCD design report
 - 2. Package design report
 - 3. Mechanical package model
 - 4. First operable lot prototypes & test reports
 - 5. Interim Review
 - 6. Yield & reproducibility demonstration (2 additional lots)
 - 7. Final review including production plan
- Two optional deliverables:
 - 1. Assembled raft baseplate design and production plan
 - 2. Curvature wavefront sensor design
- Suggested schedule of deliverables
- Eligibility and award selection criteria

• Evaluation team selected by Don Sweeney:

- J. Geary
- K. Gilmore
- P. O'Connor, chair
- V. Radeka
- T. Tyson
- V. Krabbendam, D. Sweeney (ex officio)
- RFP issued Feb. 4, 2008
- Clarification telecon w/vendors Feb. 29
- Proposals received by May 7
- Evaluation committee met June 9-10 and issued recommendation memo to LSSTC
- Revised proposals received from awardees
- Formal contracts drafted
- Contracts signed Oct. ??

Scope of work

• e2v

- all seven required deliverables
- reduce quantity of mechanical samples
- omit commissioning some production equipment
- scale back manufacturability demo to one lot (require more contingency in production contract)
- supplemental funding of \$0.4M needed to recover full scope by 2010
- ITL
 - package development is emphasized (ITL has already delivered working 4K x 4K devices in study phase)
 - deliver packaged samples of study contract devices only (won't meet LSST specs in several areas).
 - no CCD redesign and no manufacturability demonstration
 - performance period reduced to 1 year
 - recovery of full scope needs additional \$1.1M

Wavefront sensor development remains unfunded

Chart removed for public distribution

sensitive - not to be distributed outside collaboration

Sensors Experimental Program at BNL

- Understand behavior of thick fully depleted CCDs
- Study sources of intra- and inter-chip variability
- Develop qualification test for production sensors:
 - instrumentation and data collection
 - calibration
 - algorithms
 - database

BNL Test Facilities – Bldg. 535

LSST Camera Workshop SLAC Sept. 16 - 19, 2008

- CCD controller
- Point projector
- Fringe projector
- In-cryostat xray source swing arm
- LN2 autofill

- Five operable devices delivered
- Two mechanical samples
- 100, 150µm thick
- single, two-stage amplifiers
- Format: 2K x 0.5K, 2K x 4.5K (col. x row)
- **13.5**µm pixels
- "first-generation" high-rho CCDs:
 - backside illuminated
 - biased, conductive window
 - no separate frontside substrate contact \rightarrow high noise
- Results have been presented at 5/08 AHM, SPIE 6/08 meeting

Dark current and defects

Normalized flatfield response vs. wavelength

250

200

15

10

450nm

runset 20080907-110101 analyzed 2008-09-08 08:40:38 temp= -70 bias= -50.0 gain= LOW amp mode= RIGHT clipped 450nm ave ADU 326.6 frac stddev_1055

1.04

0.94

0.92

SLAC Sept. 16 - 19, 2008

Quantum efficiency vs. temperature

LSST Camera Workshop SLAC Sept. 16 - 19, 2008

Two methods of Xray cluster analysis

small section of xray image

gain from 'sextractor' vs gain from 'root'

- subtract bias frame
- identify clusters
- sum flux in cluster
- find conversion gain from known charge generated by ⁵⁵Fe K α , K β photons

Sextractor version

LSST Camera Workshop SLAC Sept. 16 - 19, 2008

CTE: 200808 data set, device 106-07, T=-140C

initial distribution

after correction

X direction, serial transfer CTE=0.999911

Y direction, parallel transfer CTE=0.999996

21

Charge Transfer Efficiency (Inefficiency)

CTE from slope of ⁵⁵Fe peak vs. no. pixels shifted

Charge transfer efficiency vs. temperature

Model

- High field effects important at our electric field
- Drift time increase due to velocity saturation
 - substantially increases diffusion
 - effects hole transport differently than electrons
- Possible suppression of transverse diffusion coefficient at high fields
 - reduces diffusion, countering velocity saturation effect
- Possible non-uniform doping of high-rho silicon near entrance window
 - would leave thin undepleted, field-free region, leading to high diffusion
- Not easy to distinguish experimentally

- Virtual Knife Edge method
 - project small spot on detector, scan spot, calculate flux in virtual box
 - differentiate to get PSF
- Modulation transfer function method
 - project sinewave pattern on detector, measure contrast vs. spatial frequency
- Xray method
 - analyze distribution of xray cluster size, fit to PSF model
- Cosmic ray method
 - oblique-incident cosmic muons leave long track
 - track width on detector is indication of diffusion as function of depth
 - estimate diffusion vs. depth from track width (compare simulation)

Thk	100				75	45	193	280	um
Rho	3000				3000		3800	12800	Ohm-cm
Bias	-70				-50		133	80	V
Temp	163		203		20	00	140	140	K
	e-	h	e-	h	е	е	h	h	
No HFE	2	2	2.2	2.2	2.1	1.7	2.6	4.9	um
VS only	4.3	3.3	4	3.2	3.5	2.7	4.7	6.8	um
VS + DT-s	2.3	2.8	1.7	2.9	2.4	2	3.7	6.4	um
Meas.	5				3.1	1.9	3.9	6.3	um
Ref.	BNL				Tonry	Tonry	Karcher	Holland	

Camera requirement: 0."25 FWHM = $5.30 \mu m$

Data QA plots

monitor track of temperature, noise and offset in overscan image region during overnight data taking runs

study deliverable, 2K x 512, backside

study deliverable, 2K x 512, backside LSST Camera Workshop SLAC Sept. 16 - 19, 2008 study deliverable, 2K x 4K, backside

Flatness: STA/ITL 4K x 4K study contract device Survey Telescope

Standard test procedure – CCDs (preliminary ge synoptic Survey Telesco)

- Log device in
- Transfer CCD from storage container to test cryostat
- Vacuum
- Apply bias and clocks observing required sequence
- Cool down to operating temperature (don't exceed maximum dT/dt)

bias subtraction, read noise

conversion gain, CTE, PSF(?)

dark rate

- Start automated data taking script
 - zero exposures
 - dark frames to 500s
 - ⁵⁵Fe exposures
 - monochromatic flat fields QE, linearity, full well
 - \mathcal{O} of the theorem of the test of test of
- Run data QA check
 - reject compromised data sets
- Warm up Dewar, break vacuum, transfer CCD to clean storage
- Transfer fits files to cluster for analysis
- Extract fits headers for image database
- Run analysis scripts
 - image processing pipeline to extract standard report, check vs. requirements
- Enter results in test database

Device	106-05	106-06	106-07	107-01	
columns x rows	2000 x 500	2000 x 500	2000 x 4000	2000 x 500	pixels
Thickness	100	100	100	150	microns
amplifier	1	2	2	2	stage
Temperature	-110	-110	-100	-110	deg C
QE400	43	46	49	39	%
QE600	76	79	80	81	%
QE800	93	100	101	98	%
QE900	83	92	93	96	%
QE1000	28	32	33	47	%
ReadNoise	16.8	14.9	21.7	16.6	%
Full Well	-	310k	180k*	350k	е
Conversion gain	1.68	5.89	3.53	6.40	e/ADU
Linearity (~100e to 90%FW)	-	-4; +1	+/-0.4*	-0.7;+1.4	%
xray <npix></npix>	3.49	3.86	3.73	5.12	pixels
Darkrate 50%	0.058	0.029	0.031	0.025	e/pix/sec
Darkrate 95%	0.083	0.054	0.097	0.055	e/pix/sec
Darkrate 99%	0.128	0.07	0.3	0.081	e/pix/sec
Defects	0.0273	0.0027	0.132	0.0036	%
Flatness (95th %ile p-v)	4	5.5	4.4	-	microns

- Verify diffusion model and measurement
- Evaluate STA/ITL study contract devices
- Evaluate prototype devices
- Complete 2nd generation test stand: new Dewar, controller, PSF point projector, MTF fringe projector → evolve to production test stand
- Design and procure production test hardware, facilities
- Develop production test procedure, software, and database
- Technical liason with vendors
 - Electrical interface to FEE (w/UPenn)
 - Mechanical/thermal interface to raft (w/SLAC, Purdue)
 - WFS (pending availability of funding)

Raft Tower Module (RTM) Design Modifications

Raft-tower design changes

select connectors for FEE-BEE and FEE-CCD

requires increased clearance at cryoplate interface, changed heat path

> LSST Camera Workshop SLAC Sept. 16 - 19, 2008

Revised design of raft-GRID hold-down (see cryostat and service survey Telescope

- raft preload maintained constant during load transfer from Cage to GRID
- cryoplate no longer supports raft-GRID preload
- occupies more volume in bay

Beginning analysis of deflection under

Poco SuperSiC raft Load case: 1N at center bolt hole max. defl. 8.5nm

Raft Tower Module (RTM) Flatness metrology

Metrology samples

Differential screw adjustor

2 versions designed and fabricated 50 μm and 60 μm per turn

old system

new 400mm system

Surface flatness of two material samples

0.65mm Si wafer, laser cut, CA glue to AIN ceramic

2.4mm float glass, epoxy to Al frame

Flatness adjustment using lapped spacers

Best achieved flatness

best fit plane to each tile (remove warpage)

Aside -- Objet Eden 260 3D printer

Technical Specifications

Build size (X x Y x Z) 260mm x 260mm x 200mm (10.2 X 10.2 X 7.9 inches)

Print Resolution

X-axis: 600 dpi: 42 μ Y-axis: 300 dpi: 84 μ Z-axis: 1600 dpi: 16 μ

FullCure®840 VeroBlue

Property	ASTM	Results	(Metric)	Results	Results (Imperial)	
Tensile Strength	D-638-03	MPa	55.1	psi	7 ,990	
Modulus of Elasticity	D-638-04	MPa	2,740	psi	397 ,300	
Elongation at Break	D-638-05	%	20	%	20	
Flexural Strength	D-790-03	MPa	83.6	psi	12,122	
Flexural Modulus	D-790-04	MPa	1,983	psi	287,535	
Compressive Strength	D-695-02	MPa	79.3	psi	11,499	
Izod Notched Impact	D-256-06	J/m	23.6	ft Ib/in	0.44	
Shore Hardness	Scale D	Scale D	83	Scale D	83	
Rockwell Hardness	Scale M	Scale M	81	Scale M	81	
HDT at 0.45 MPa	D-648-06	°C	48.8	°F	120	
HDT at 1.82MPa	D-648-07	°C	44.8	°F	113	
Tg	DMA, E"	°C	48.7	°F	120	
Ash Content	NA	%	<0.3	%	<0.3	
Water Absorption	D570-98 24 Hr	%	1.87	%	1.87	

Property	ASTM	Results i Un	n Metric its	Results in Ui	n Imperial nits
Tensile Strength	D-638-03	MPa	21.3	psi	3,089
Modulus of Elasticity	D-638-04	MPa	1135.8	psi	164,691
Elongation at Break	D-638-05	%	44.2	%	44
Flexural Strength	D-790-03	MPa	33.2	psi	4,814
Flexural Modulus	D-790-04	MPa	1,026.1	psi	148,785
Compressive Strength	D-695-02	MPa	30.7	psi	4,452
Izod Notched Impact	D-256-06	J/m	44.22	ft Ib/in	0.83
Shore Hardness	D-2240-03	Scale D	76	Scale D	76
Rockwell Hardness	D-785-03	Scale M	97	Scale M	97
HDT at 0.45 MPa	D-648-06	°C	43	°F	109
HDT at 1.82 MPa	D-648-07	°C	40	°F	104
Tg	DMA, E"	°C	35.9	°F	97
Water Absorption	D570-98 24 Hr	%	1.69	%	1.69

assemble pre-cabled CCDs to raft

metrology scan

install housing sides 3 & 4

install housing sides 1 & 2

RTM Integration procedure (preliminary)

- Tooling and fixturing
 - raft metrology jig, height transfer standard, flatness standard, displacement sensor, gantry xyz stage, adjustment tooling, assembly fixture
 - Dewar, Dewar mount, vacuum system, cryosystem, xray source carriage, control and readout electronics
 - Optical testbench: source, filters, monochromator, sphere, baffles, monitor photodiodes

Inventory of qualified components

- CCDs, raft baseplates, mounting hardware, cage mechanics, FEBs, cooling straps, heaters, spring preload hardware, cables, MLI(?)
- Serial numbering
- Vacuum-prepare materials
- Assemble CCDs to raft
- Transfer to metrology jig, survey flatness and piston
- Align as necessary (may require disassembly-reassembly)
- Transfer to assembly fixture
- Assemble FEBs, cooling planes, cooling straps, heaters, cage sides, spring preload mechanisms, MLI
- Transfer RTM to metrology jig, verify flatness and piston
- Transfer to cryo-metrology test station, evacuate, cooldown, apply power, run final verification test
- Warm up, transfer tested RTM to shipping container
- Prepare test report and update database

- Finalize design of science raft hold-down
- Evaluate need for molecular flow barrier
- Evaluate candidate raft materials, vendors
- Fabricate and test raft prototype with dummy sensors
- Develop assembly tooling:
 - raft assembly jig
 - RTM assembly fixture
 - Cryo test stand for final test
 - mechanics, optics, xray, cryo, vacuum, electronics
- Cleanroom preparation
- Software: DAQ, analysis, database

Timelines

R&D Timeline

Oct-08 Nov-08 Dec-08 Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09 Jan-10 Feb-10 Mar-10 Apr-10 May-10 Jun-10 Jul-10 Aug-10 Sep-10 Oct-10 Nov-10 Dec-10

BACKUPS

CfA camera controller

- provides clock and bias signals to operate the CCD(s).
- receives video signals, digitizes to 16 bits, writes FITS file to Linux host over optical link.
- 4 channels per A/D board; up to 16 channels.
- latest in a succession of camera controllers for ground and space astronomy projects (MMT Megacam, Kepler)
- Clock rate limited to < 200kpix/s.
- Clocking patterns not easy to modify.
- Unavailability of schematics.
- Noise contribution not accurately known, may be significant.
- Preamp box hard-mounted to Dewar; need to break vacuum to service.

- We asked Geary for a new controller able to evaluate LSST sensors (16 outputs) at full clock rate (500 kpix/s).
- A new board set has been designed.
- Boards are fabbed in IO PC shop. First boards delivered to CfA; still need to fab a couple more.
- After debug, 5 copies of controller to be built for:
 - BNL (we are the guinea pig for the new design)
 - SLAC
 - Purdue
 - LPNHE
 - UC Davis

Fast multichannel controller

Xray mechanisms for single 4K^2 and fully populated raft

modified swing arm for 4K^2

xray "carriage" for raft

LINUX PC

4 methods of measuring PSF under study

VIRTUAL KNIFE EDGE

MODULATION TRANSFER FUNCTION

XRAY CLUSTER SIZE

wavelength

Methods

- Dark current + defects
 - 36 bias frames; six 600s exposures
- Xray transfer
 - 36 bias frames; 49 exposures to ~5μCi 55Fe source
- QE scan
 - 25 bias frames; 17 flatfield exposures to monochromatic light 300-1100nm at 50nm intervals
- Linearity
 - 20 bias frames; 23 flatfields from dark to full well at 830nm
- PSF
 - 20 bias frames; focus point projector on CCD surface; scan in 2um steps for 10 pixels in x- and y-direction
- Mechanical flatness
 - mount CCD on xy stage; measure z-height at 0.5 x 0.5mm grid

we have developed an automated script that performs these measurements and most of the analysis three temperatures and one bias setting requires about <u>6 hours</u> to run and generates <u>816 image files</u> we plan to add PSF measurement LSST Camera Workshop SLAC Sept. 16 - 19, 2008

Data reduction for QE

• Flux determination:

- calibrated photodiode is placed behind precision aperture at the CCD location
- second photodiode mounted in auxiliary port of integrating sphere
- measure photocurrent vs. wavelength in both diodes
- check ratio for reproducibility
- also check irradiance pattern at CCD location
- use sphere PD for flux monitoring during QE scan of CCDE

• Gain determination:

- irradiate CCD with 5.9keV xrays from ⁵⁵Fe source mounted inside Dewar
- collect ~10⁵ events from multiple exposures to avoid crowding
- use clustering algorithm to analyze xray hits to get xray spectrum
- fit spectrum to $Mn \ K\alpha$ and $K\beta$ peaks; determine peak ADU for each line
- convert peak ADU to gain using known xray energies and pair creation energy of silicon (temperature dependent)
- Repeat for each temperature and bias setting

Detail of electrical cabling and thermal straps

Electrical interface

Electrical interface

- CCD has 16 segments
- all bond pads on 2 edges
- parallel clocks driven from both ends
- assume 2 flex pigtails from CCD
- flex cable length ~ 6 9 cm
- shielding needed for excellent crosstalk rejection
- flex pinouts should be as similar as possible to allow FEE boards to be identical
- each flex has individual segment OD, OS, and possibly OG,RD
- one flex has serial clocks and reset gate
- one flex has parallel clocks (requires bussing on package ceramic)
- strawman flex pinout on next slide (for conceptual design purposes only)

Strawman CCD pinout

Connector J1

Connector J2

ر	PIII KEF	Description	PIII KEF	Description
	1 OS0	Output Source, segment 0	1 OS8	Output Source, segment 8
	2 OG0	Output Gate, segment 0	2 OG8	Output Gate, segment 8
	3 OD0	Output Drain, segment 0	3 OD8	Output Drain, segment 8
	4 RD0	Reset Drain, segment 0	4 RD8	Reset Drain, segment 8
	5 S1	Serial Clock Phase 1	5 P1	Parallel Clock Phase 1
	6 OS1	Output Source, segment 1	6 OS9	Output Source, segment 9
	7 OG1	Output Gate, segment 1	7 OG9	Output Gate, segment 9
	8 OD1	Output Drain, segment 1	8 OD9	Output Drain, segment 9
	9 RD1	Reset Drain, segment 1	9 RD9	Reset Drain, segment 9
	10 S2	Serial Clock Phase 2	10 P2	Parallel Clock Phase 2
	11 OS2	Output Source, segment 2	11 OS10	Output Source, segment 10
	12 OG2	Output Gate, segment 2	12 OG10	Output Gate, segment 10
	13 OD2	Output Drain, segment 2	13 OD10	Output Drain, segment 10
	14 RD2	Reset Drain, segment 2	14 RD10	Reset Drain, segment 10
	15 S3	Serial Clock Phase 3	15 P3	Parallel Clock Phase 3
	16 OS3	Output Source, segment 3	16 OS11	Output Source, segment 11
	17 OG3	Output Gate, segment 3	17 OG11	Output Gate, segment 11
	18 OD3	Output Drain, segment 3	18 OD11	Output Drain, segment 11
	19 RD3	Reset Drain, segment 3	19 RD11	Reset Drain, segment 11
	20 SS	Substrate	20 P4	Parallel Clock Phase 4
	21 OS4	Output Source, segment 4	21 OS12	Output Source, segment 12
	22 OG4	Output Gate, segment 4	22 OG12	Output Gate, segment 12
	23 OD4	Output Drain, segment 4	23 OD12	Output Drain, segment 12
	24 RD4	Reset Drain, segment 4	24 RD12	Reset Drain, segment 12
	25 RG	Reset Gate	25 GD	Guard Drain
	26 OS5	Output Source, segment 5	26 OS13	Output Source, segment 13
	27 OG5	Output Gate, segment 5	27 OG13	Output Gate, segment 13
	28 OD5	Output Drain, segment 5	28 OD13	Output Drain, segment 13
	29 RD5	Reset Drain, segment 5	29 RD13	Reset Drain, segment 13
	30 TSFP	Temp Sense Force Positive	30 TSFM	Temp Sense Force Negative
	31 OS6	Output Source, segment 6	31 OS14	Output Source, segment 14
	32 OG6	Output Gate, segment 6	32 OG14	Output Gate, segment 14
	33 OD6	Output Drain, segment 6	33 OD14	Output Drain, segment 14
	34 RD6	Reset Drain, segment 6	34 RD14	Reset Drain, segment 14
	35 TSMP	Temp Sense Measure Positive	35 TSMM	Temp Sense Measure Negative
	36 OS7	Output Source, segment 7	36 OS15	Output Source, segment 15
	37 OG7	Output Gate, segment 7	37 OG15	Output Gate, segment 15
	38 OD7	Output Drain, segment 7	38 OD15	Output Drain, segment 15

SLAC Sept. 16 - 19, 2008

- Radiometry: factory-calibrated Hamamatsu photodiodes
- Wavelength: Hg, Xe arc lines
- Temperature: factory-calibrated RTD's
- Charge: ⁵⁵Fe xrays conversion in Si
- Height: precision, low expansion optical parallel

Diffusion

Model

- High field effects important at our electric field
- Drift time increase due to velocity saturation
 - substantially increases diffusion
 - effects hole transport differently than electrons
- Possible suppression of transverse diffusion coefficient at high fields
 - reduces diffusion, countering velocity saturation effect
- Possible non-uniform doping of high-rho silicon near entrance window
 - would leave thin undepleted, field-free region, leading to high diffusion
- Not easy to distinguish experimentally

- Virtual Knife Edge method
 - project small spot on detector, scan spot, calculate flux in virtual box
 - differentiate to get PSF
- Modulation transfer function method
 - project sinewave pattern on detector, measure contrast vs. spatial frequency
- Xray method
 - analyze distribution of xray cluster size, fit to PSF model
- Cosmic ray method
 - oblique-incident cosmic muons leave long track
 - track width on detector is indication of diffusion as function of depth
 - estimate diffusion vs. depth from track width (compare simulation)

Thk	100			75	45	193	280	um	
Rho	3000			3000		3800	12800	Ohm-cm	
Bias	-70				-50		133	80	V
Temp	163		203		20	00	140	140	K
	e-	h	e-	h	е	е	h	h	
No HFE	2	2	2.2	2.2	2.1	1.7	2.6	4.9	um
VS only	4.3	3.3	4	3.2	3.5	2.7	4.7	6.8	um
VS + DT-s	2.3	2.8	1.7	2.9	2.4	2	3.7	6.4	um
Meas.	5				3.1	1.9	3.9	6.3	um
Ref.	BNL				Tonry	Tonry	Karcher	Holland	

Camera requirement: 0."25 FWHM = $5.30 \mu m$

Point projector characterization

- Best image around +40µm position. Strehl = 0.112.
- Model calculations look very much like the measurements with the SI 1280XV camera.
- Although central image core is narrow, encircled energy indicates significant energy (65%) is outside the core in aberrated image vs. 18% for unaberrated image.
- This energy is spread over a large, diffuse area.
- Need to model how this image shape produces an observed spot on the sensor.
- Can observed sensor PSF be corrected for a broadened source image?
- Custom design required to produce a lens that is compensated for spherical aberration from the thick window.

Diffusion vs. depth into silicon

Gaussian rms of charge cloud due to diffusion:

$$\sigma d(tdr) := \sqrt{2D \cdot tdr}$$

where

z = conversion depth

d =thickness of CCD (100 or 150um)

Vdepl = depletion voltage (28V for 100um, 35V for 150um)

u = overdepletion factor $\perp \approx 2.4$ for 50 – 70V bias of e2v devices

vs = saturated velocity of electrons = 10^7 cm/s

 μ 0 = low field drift mobility at 163K = 5800 cm²/V-s

D = transverse diffusion coefficient at $163K = 83 \text{ cm}^2/\text{s}$

Figure 1: drift time (red) in ns, PSF (blue) in microns rms vs. conversion depth in microns for 100um-thick, fully depleted CCD at 163K

Nonuniform doping fits VKE measurement for two thicknesses

SLAC Sept. 16 - 19, 2008

Fringe projector for MTF study

substrate reverse bias, V

Two 'typical' cosmic tracks @

-50V bias

0V bias

Entrance window

Diffusion PSF from xray analysis

npix distribution 100um device, -75V blue – measured magenta -- model, VS included yellow – model, VS + 0.8*DT npix distribution 150um device, -75V blue – measured magenta -- model, VS incl. yellow – model, vs + 0.8*DT

surface PSF ~ 4.5um

VKE scan analysis

Sum the intensity in the region as the spot moves across the right edge.

This defines the virtual knife edge.

Each frame corresponds to Δx of 0.5 microns in object space.

Pixel size is 0.5736 µm in object space.

- LSST science mission depends on a consistent stream of stable, homogeneous images
- The major source of variability of the camera will come from temperature variations, which affect:
 - sensor QE, dark current, responsivity, CTE, diffusion
 - variations important for photometry and PSF stability
 - electronics offset, gain, crosstalk
 - mechanical position of sensors
- Temperature stability of the camera depends on closely coordinated subsystems:

Temp sensors and heaters	Rafts	BNL/Purdue
Heat generation on FEE	Electronics	Penn
ADC, DAC on BEE	Electronics	Harvard
Control loop algorithm	CCS	Santa Cruz/SLAC/UIUC
Cryogen temp and flow	Cryostat	SLAC
Temp of cryostat walls & L3	Cam. Body & Mech.	SLAC

$$\sigma_{\perp} = \sqrt{2D_{\perp}t_{dr}}$$

$$\sigma(v_{s})/d = \left(2\frac{kT}{q_{e}V_{op}}\right)^{1/2} \left[1 + \frac{\mu_{0}(T)\overline{E}}{v_{s}}\right]^{1/2} \left[\frac{D_{\perp}(E)}{D(0)}\right]^{1/2}$$

- We have performed a detailed analysis of carrier transport in the region where the mobility decreases due to velocity saturation and find the following:
- 1. There is an *increase* in the diffusion due to a longer carrier drift time than expected in the constant mobility case;
- 2. There is a *decrease* in the (transverse) diffusion coefficient due to the streamlining effect of the electric field on the carriers in random+drift motion .
- The two opposing effects result in a net diffusion increase factor of ~1.15 for electrons (p-substrate sensors), and ~ 1.32 for holes (n-substrate), at 173k and 5kV/cm.
- This analysis provides a close fit to the PSF measurement results obtained with the LBL CCDs, and with the Pan-STARRS CCDs.