

Integration, Test, and Calibration

Elliott Bloom

Integration and Test and Calibration Manager

elliott@slac.stanford.edu

I&T&C Organization Chart

Integration and Test Subsystem Work Breakdown

4.1.9.1 I & T Management

•

•

- Coordinate I & T planning
- Develop LAT I & T plan, to ensure flow of verification test activities
- 4.1.9.2 Reliability and Quality Assurance
 - Collect subsystem verification test results
 - Manage LAT verification test assurance activities
- 4.1.9.3 I & T Preparation <u>Integration, Facilities, Configuration, and Test</u>, <u>Particle Test</u>, <u>Environmental Test</u>, <u>Science Verification Analysis, &</u> <u>Calibration</u>.
- Prepare LAT I & T facilities
 - Develop calibration equipment
 - Develop Verification matrix and particle test plan
 - Develop environmental test plan
 - Develop Calibration plan

- EM1 Model I&T&C-Integration, Facilities, Configuration, and Test, Science Verification Analysis, & Calibration. (Currently no funding)
 - Coordinate I&T&C tests with subsystem tests.
 - Use subsystem calibration data to tune up I&T&C calibration program.
 - Run cosmic rays on "assembled" EM1-EM2 unit at SLAC.
- 4.1.9.4 Calibration Unit I & T -<u>Integration, Facilities, Configuration, and Test</u>, Particle Test, <u>Science Verification Analysis, & Calibration</u>.
 - -Prepare for and integrate Calibration flight modules.
 - -Prepare for and test QU with cosmic rays, positron, photon, and hadron beams.
 - Produce LAT calibration products for SAS from QU beam data.
- 4.1.9.6 Flight LAT I&T- Integration, Facilities, Configuration, and Test, Particle Test, Environmental Test, Science Verification Analysis, & Calibration.
 - -Prepare for integration of flight LAT; fabricate and test all mechanical GSE
 - -Mechanically integrate flight LAT
 - -Plan for and execute environmental verification testing
 - -Support planning and execution of Observatory I&T

E. Bloom

• 4.1.9.7 Mission I&T Support- Integration, Facilities, Configuration, and Test. Particle Test, Environmental Test, Science Verification Analysis, & Calibration.

Produce a Working Instrument!

Integration, Test, and Calibration Activities

- I & T "subsystem" is focal point of LAT integration activities
 - I & T & C team plans and manages activities.
 - TKR, CAL, and ACD subsystem teams provide support for Integration & Calibration.
- Total effort involves:

GLAST LAT Project

- I & T & C Subsystem
 - LAT integration planning and management.
 - Mechanical integration and GSE and EGSE development.
 - Plan Environmental tests and Execute.
 - Calibration particle beam and test equipment development.
 - Ground Verification and Calibration of LAT.
 - Commissioning of LAT in orbit.
 - Deliver a Working Instrument to IOC.
- Mechanical Systems
 - Environmental test support.
 - LAT qualification testing analysis.
- Electronics and Data Acquisition
 - LAT electrical integration.
 - Performance test planning and execution.
 - Flight software verification testing.
- IOC Electrical GSE development, including calibration DAQ system
 - LAT performance test planning.
 - EGSE, and GSE operations and support during LAT I & T & C.
- Science Analysis Software
 - Calibration analysis software development.

Integration Planning Activities

- LAT integration planning
 - Planning for subsystem integration has been included in development of interfaces and LAT design integration
 - Developing concepts for integration EGSE and GSE.
- LAT integration facilities
 - New clean room facilities have been built at SLAC for GLAST
 - Facilities include I&T infrastructure
 - Clean room with high bay
 - Storage for flight hardware
- Environmental Tests
 - LAT thermal tests at SLAC.
 - Full suite of environmental tests at NRL.
- Observatory integration support
 - I&T&C team has been involved with mission in investigating options for observatory integration.
 - LAT and observatory require combined EGSE, GSE and coordinated plans environmental test plans.

Concept of LAT Integration Frame

I&T&C Pre PDR Presentation– Oct. 2, 2001

Integration and Test Facility at SLAC

I&T&C Pre PDR Presentation– Oct. 2, 2001

LAT I&T&C Verification and Calibration Flow

I&T&C Pre PDR Presentation- Oct. 2, 2001

GLAST LAT Project

EGSE Areas of Responsibility

- GLAST Mission
 - Scott Lambros
- LAT
 - Large Area Telescope
 - Peter Michelson
- EGSE
 - Electronics Ground Support
 Equipment
 - Gunther Haller
- I&T&C
 - Integration and Test and Calibration
 - Elliott Bloom
- IOC
 - Instrument Operation Center
 - Scott Williams

Mission									
	LAT								
	EGSE	I&T&C	IOC						
	Online								

I&T&C Pre PDR Presentation– Oct. 2, 2001

Tests & EGSE Configurations

Science Verification, Analysis and Calibration (SVAC) System

2

SVAC Data

	(being reviewed by subsystems)	
Science verification	High Level Calibration	Low Level Calibration
	Subset of performance calibrations	Subset of baseline calibrations
Effective Area Energy Resolution Point Spread Function Field of View Time Accuracy Background Rejection Deadtime Source Location Point Source Sensitivity GRB,AGN location GRB,AGN notification time	ACD•Detection Efficiency (CT1) •High Threshold detection (CT2)TKR•Single Tower Alignment (CT4) •Multiple Tower Alignment (CT5) •LAT & Observatory Alignment (CT6)CAL•PIN Diodes Optical Gain (CT10) •Light Attenuation (CT11) •Light Asymmetry (CT12)	ACD •Pedestals (CT3) TKR •Noisy Strips (CT7) •Dead Strips (CT8) •Time-Over-Threshold (CT9) CAL •Pedestals (CT13) •Energy range: Electronic Gain (CT14) •Energy range: Electronic Gain Occupancy (CT15) •Energy range: Integral non linearity (CT16) •Energy range: Differential non linearity (CT17)

Particle test Verification Matrix

- Requirements flow down from
 - LAT Science Requirements Document Level II Specification LAT-SS-00010-1 (found in LAT-SS-9.1)

- Summarized by the Instrument Scientist (Steve Ritz)

Parameter	Constraint	Requirement	Goal	Proposed Verification (all statistics are TBR)	Spec Ref	Beam Tests that do the Verification
A _{eff}	20 MeV	> 300 cm ²	> 1000 cm ²	Sim, BT (>10,000 tagged photon triggers at 20±5 MeV, normal incidence)	5.2.1	 Chan rad, 20 and 50 Mev γ, norm incid Van de Graf 17.6 Mev γ Brem beam, simultaneously all γ energy bins from 20 Mev to 30 Gev, variety of angles and tranverse positions.
	100 MeV	> 3000 cm ²	> 8000 cm ²	Sim, BT (>5,000 tagged photon triggers at 100±10 MeV, normal incidence)	5.2.1	 Coherent Brem, .1,.2,.5,1,2,5,10,30 Gev, norm incid Brem beam, simultaneously all γ energy bins from 20 Mev to 30 Gev, variety of angles and tranverse positions.
	1,10 GeV	> 8000 cm ²	> 10,000 cm ²	Sim, BT (>1000 tagged photon triggers at 1±0.1 GeV and 10±1 GeV, normal incidence)	5.2.3	 Coherent Brem, .1,.2,.5,1,2,5,10,30 Gev, norm incid Brem beam, simultaneously all γ energy bins from 20 Mev to 30 Gev, variety of angles and tranverse positions.
	300 GeV	> 6400 cm ²		Sim, BT (>1000 tagged photon triggers at 10±1 GeV, then extrapolate. Simulations must match measured backsplash rates to better than 10% earlier measurements must be reviewed and, if necessary, another set of measurements must be made.)	5.2.1	
	1 TeV		$> 9500 \text{ cm}^2$	Sim, as 300 GeV case above.	5.2.1	
A_{eff} knowledge (1 σ)	20-50 MeV	< 50 %	< 20 %	Sim (compare the simulation predictions with the measured values for spec refs 5.2.1 and 5.2.3 above. Effective area below 100 MeV is changing rapidly, and this region must be mapped out carefully. Sim in 10 MeV bins)	5.2.4	
	50-300 MeV	< 25 %	< 10 %	Sim (as above)	5.2.4	

GLAST LAT Project Cosmics in Airplane (Psuedo Balloon Flight for Complete Flight Instrument, but Even Better)

- Full LAT in an airplane (during airplane ride to NRL thermal vac ?)
- L1T trigger rate measured in single tower during Balloon Flight

Altitude [Ft]	BFEM L1T [Hz]	Notes
0	25	Ground
25,000	540	Same rate as in orbit
35,000	900	Airplane flight
50,000	1175	Pfotzer max
127,000	540	~Orbital rate

- At 25,000 feet verify the flight hardware at orbital L1T rates
 - ~25 (BFEM size towers) x 540 Hz = 13.5 kHz
 - DAQ doesn't crash
 - Software filter handles the rate and produces the expected downlink rate
 - Livetime is accurately measured
- At 35,000 feet test the flight hardware at > orbital L1T rates
 - ~22 kHz saturates the LAT trigger
 - DAQ should not crash

I&T&C Pre PDR Presentation– Oct. 2, 2001

Environmental Test Matrix

	Fit.D.	Siruc Check	Mass Strength	Mago C.G.	Sine Sw.	Rendom	4cousti	Mech.	Therman, Shock	Therman	Therman	EMC CUUM	4lion.	Press.	Filgh,	Filion, Ory	. Spares
<u>Tracker</u> Qual Trays Qual Module (TKR #1) Trays Modules (TKR #2-18)	M M M	Proof Proof	\mathbb{Z}	М	PFQ PFQ Acc	PFQ PFQ Acc Acc	PFQ			PFQ Acc	PFQ PFQ Acc	PFQ Acc	M M M M	Ana	304 16	10 1 28+20 1	
<u>Calorimeter</u> Qual Module (CAL #1) Modules (CAL #2-18)	M M	Proof	M M	М	PFQ Acc	PFQ Acc					PFQ Acc	PFQ Acc	Μ	Ana	16	1 1	
Anti-Coincidence Detector ACD Flight Unit	М	Proof	М	М	PFQ	PFQ	PFQ				PFQ	PFQ	М	Ana	1		
Mechanical Systems Grid Structure Heat Pipes Radiators Qual. Grid Assembly Flight Grid Assembly Grid Ass'y w/ Radiators	M M M M	Proof Proof Proof Proof	M M M		PFQ PFQ, MM	PFQ PFQ, MM	PFQ		PFQ, TM	PFQ PFQ PFQ, TM	PFQ PFQ, TM			Proof	1 34 2 1 1	1 4 1	
<u>Electronic Systems</u> TEM, SIU, ACD Units Cable Harness	M		M M		PFQ	PFQ					PFQ	PFQ		Ana	20	3	
LAT Flight Unit GLAST Observatory	M		M M	M M	Acc	Acc	Acc Acc	Acc	Acc	Acc Acc	Acc	Acc Acc	M M	Ana	1 1		LAT Modal Survey

	Ana:	Analysis	Acc:	Acceptance-level testing	M:	Measure or Inspect
	MM:	Test, using Mass Models	PFQ:	Protoflight Qual-level testing	S:	Test sample of total
Pov data: 1 Oct 01	TM:	Test, using Thermal Models	Qual:	Prototype Qual-level testing	Y:	Yes, this is performed
Revuale. 1 Oct 01			Proof:	Test to Proof levels		

E. Bloom

NRL Environmental Test Facility

- Spacecraft Acoustic Reverberation Chamber
 - Sound pressure level of 153 dB through a range of 32-10,000 Hz
 - 30,000-lb force electrodynamic vibration exciter

- Thermal High-Vacuum Chamber Facility
 - 18 ft diameter x 32 ft in length
 - Pressures below 1x10⁻⁶ Torr

I&T&C Pre PDR Presentation- Oct. 2, 2001

GLAST LAT Project

NRL Environmental Test Facility

• Spacecraft Vibration Test Facility

- Largest table: 35,000-lb Spacecraft
 Vibration Test Facility
- Largest table: 35,000-lb continuous sine or rms random vibration output and 105,000-lb peak random vibration
- Frequency range 5 to 2000 Hz

• EMI Test Chamber

prePDR Schedule

9:30	-	9:55 AM		Bloom Intro/Overview
9:55	-	10:10 AM		Grist - Top Level Cost Estimate, Top Level Schedule
10:10	-	10:30 AM		Marsh - QA/Reliability
10:30	-	10:50 AM		Claus - Online
10:50	-	11:10 AM		Williams - IOC Coordination
11:10	-	11:30 AM		Millican - Integration, Facilities, Configuration, and Test
11:30	-	11:40 AM	Break	
11:40	-	12:00 PM		Godfrey - Particle Test
12:00	-	12:20 PM		Lovellette - Environmental Test
12:20	-	12:40 PM		do Couto e Silva - Calibration, Analysis and Science Verification
12:40	-	12:50 PM		Bloom - Summary/Open issues and concerns.
12:50	-	1:30 PM	Discussio	n