

Monthly Mission Review

LAT System Commissioning

J. Eric Grove Naval Research Lab eric.grove@nrl.navy.mil

LAT Monthly Review 29 June 2006

LAT performance

□ LAT performance monitoring program during environmental test

- Receiving CPT, Vibe LPTs, EMI LPTs
 - Subsystem and SE data reviews complete
- Detector and DAQ performance is stable at NRL
 - · ACD
 - Pedestals, gains, veto rates and thresholds
 - · CAL
 - Pedestals, gains, linearity, threshold rates
 - TKR
 - Bad channel list, noise occupancy
 - » Bad channel count increased by <1.5% since TKR delivery
 - » We're learning more about noise flares. See later.
 - · T&DF
 - Data integrity, transport errors, etc
- Calibration prior to TVAC is in progress
 - ACD MIP peaks, CAL energy scale, TKR efficiency

LAT Monthly Review 29 June 2006

- □ Liens against LAT CPT at PER
 - LAT-22x (Science Ops Demo)
 - Long-standing mystery resolved.
 - FSW bug prevents use of on-board filters simultaneously with periodic triggers. Will be fixed in next FSW delivery.
 - Work-around in place. Script now executes as expected.
 - LAT-23x (GRB Handling)
 - No change.
 - Tests existing FSW. Awaiting post-TVAC FSW deliveries.
- Other script news, former liens
 - LAT-15x, 16x (Thermal control)
 - Ambient test (15x) completed.
 - LAT-17x, 18x (EMI/EMC)
 - Test completed. See later discussion.
 - LAT-52x (Light Tight)
 - Test completed.
 - Prelim analysis: No issues, but still need reports from subsystems
 - LAT-8xx (Voltage margins, High rates)
 - Work-around used in LAT-22x will work here too. Test planned before TVAC.

LAT Monthly Review 29 June 2006

Preliminary look at EMI test results

Detector subsystems

LAT Monthly Review 29 June 2006

- □ EMI/EMC test program completed
- □ Susceptibility pass criteria
 - No reproducible increase in transport errors, noise triggers
 - Detectors meet noise occupancy or noise floor specs
- Offline analysis
 - Offline reports for each run
 - ACD strip charts
 - Pedestal centroid and width (= noise floor)
 - Hit and veto occupancy
 - Conclusion: No issues
 - CAL strip charts
 - Pedestal centroid and width (= noise floor)
 - CAL-LO and CAL-HI trig request rate, by Tower
 - Conclusion: No issues
 - TKR strip charts
 - Hit occupancy and trig request rate, by Tower
 - Conclusion:
 - » Reproduced known 30-100 MHz susceptibility (RS103)
 - » Noise flares complicated the discussion

LAT Monthly Review 29 June 2006

RS103 at low freqs

- Reproduced known TKR susceptibility at 30–200 MHz
 - Noise occupancy increases
 - \cdot ~33 MHz to ~100 MHz
 - Same effect observed at TKR tower-level tests
 - Noise occ can exceed spec
 - Retest at ~27C shown
 - First test at ~22C did not exceed spec
- □ Sources of <200 MHz emission
 - None on orbit
 - Ground radars
 - Transient effect on orbit

- $\hfill\square$ Time series of noise occupancy in Tower 0
 - Frequncy logarithmically increasing with time
 - 200 sec ~ 33 MHz
 - 1350 sec ~ 100 MHz

LAT Monthly Review 29 June 2006

Tracker Noise Flares

From presentations and documents by Mutsumi Sugizaki

Long term trend of noise occupancy

Noise Occupancy of each runs averaged per tower

January 06 muon-run data

April 06 muon-run data

- □ LAT goal (< 5×10^{-5}) and spec (< 10×10^{-5}) are easily met.
- □ Large-variability towers are not same between January 06 and April 06.
- □ The large variability comes from a couple of marginal noisy strips *or* intermittent noise flares.

LAT Monthly Review 29 June 2006

- Layers with noise flares
 - January 2006 Four active examples
 - April 2006 Eight active examples
 - Same four plus four new ones
 - June 2006 Nine active examples
 - Three of above plus six new ones
- Why is the number increasing?
 - In part, just more run time, and we're looking harder
- Examples of noisy strip profile of April 06 flare layers

Long term activity of flaring layers

Note: Tower occ = Layer occ / 34

Flaring layers can go active to inactive, inactive to active

LAT Monthly Review 29 June 2006

Flaring duty cycle

- Peak flare activity is rare
 - Fraction of time Tower occupancy exceeds 50% of LAT spec is small
 - Two sample epochs shown in table from M. Sugizaki

			Test runs		
TKR ID	Grid Bay #	Layer ID	Receiving test	LAT 16-Tower	TkrFM8 long run
TkrFM7	Bay10	X5	4.1%	0.0	
		Y6	1.4%	0.0	
		X17	0.0	12%	
TkrFM8		Y0	0.04%		0.0
TkrFM9	Bay11	Y0	0.75%	0.0	
TkrFM11	Bay15	X11	2.3%	0.23%	
TkrFM13	Bay7	Y14	0.0	3.6%	
TkrFM14	Bay2	Y8	0.05%	0.55%	

LAT Monthly Review 29 June 2006

Effect on science performance

- But what does all this mean? What should we care about?
 - Data volume
 - Sustained periods > 10^{-4} noise occ in full LAT stress downlink
 - Not an issue
 - Average noise occupancy in LAT is much lower
 - Tracking efficiency
 - Not an issue
 - Noisy patches are not dead
 - Tracking algorithm is very efficient at rejecting noise
 - Trigger efficiency
 - Flaring can decrease trigger efficiency and increase chance coinc
 - Only if layer occupancy > 8%
 - Not an issue
 - Flaring layers and episodes are random
 - Layer occupancies during flaring are *far* below this threshold