

Gamma-ray Large Area Space Telescope

GLAST Large Area Telescope:

Tracker Subsystem WBS 4.1.4

Persis S. Drell Stanford Linear Accelerator Center LAT Deputy Project Manager

persis@slac.standford.edu 650-926-8791

Tracker Subsystem

Outline

- Summary Status
- Tower Fabrication Status
 - Tower A
 - Tower B
 - Tower 1
- Tracker Technical Issues
 - MCM encapsulant delamination
 - Pitch Adaptors and MCM production (details from CCY)
 - Ladder Breakage on Heavy Trays
 - Flight Cables
- Cost and Schedule Status

Monthly Review, January 27, 2005

Tower A Assembly in Pisa

Monthly Review, January 27, 2005

Tower A Arrives in SFO 1/14/05 ~4PM

Monthly Review, January 27, 2005

Tower A Arrives at SLAC 1/14/05 ~6PM

Monthly Review, January 27, 2005

...and is unpacked 1/15/05

Monthly Review, January 27, 2005

GLAST LAT Project

...and works beautifully!

Tracker Subsystem

P. 5. DIEII

Monthly Review, January 27, 2005

Summary

- Tower A completed environmental testing at Alenia
 - Arrived on time at SFO 1/14/05 without incident
 - 1/16/05 read out

GLAST LAT Project

- 1/17/05 Tower A verified to be in excellent shape
- 1/24/05 EMI acceptance test completed and passed
- Currently undergoing EMI taping
- Handoff to I&T scheduled 2/1/05
- Tower B in assembly
 - Tower B vibe test successful
 - Tower B T/V delayed by chamber problems at Alenia
 - Tower B ship date ~Feb 8 pending resolution of Alenia problems
- Tower 1 Trays in assembly at G&A
 - 10 trays delivered and in tray level T/V
 - Remainder next week
 - Tower 1 T/V scheduled to start ~Feb 17
- Tower 2 Trays in assembly at Plyform

GLAST LAT Project Tracker Technical Issues: MCM Encapsulant Delamination

- MCM Anomaly Found During Tower A Tray Assembly at G&A
 - First identified in tray production at G&A where MCM on tray found to have 300 disconnected channels
 - Subsequently found in MCM's at SLAC
 - Large numbers of missing channels seen in ~15% of MCM's screened at SLAC
 - Delamination occurs mostly during 21 thermal cycles done on MCM's at SLAC (-30C to +85C)
- Missing channels due to wire bonds breaking at Pitch Adaptor to ٠ ASIC joint under black encapsulation due to delamination of the encapsulation
 - Root cause hypothesized to be silicone contamination from masking tape applied to entire surface of pitch adapter prior to reflow soldering
- C-SAM sonar images of MCM's confirm delamination ٠
 - some delamination likely in all MCM's but in most cases not enough to break wire bonds

C-SAM Analysis of MCM Encapsulation Delamination Anomaly

C-SAM sonar image of the left-hand end of MCM S/N 600. The red areas are where the encapsulation has delaminated from the pitch adapter. There are no broken wire bonds in this region or on the rest of the MCM. B

C-SAM sonar image of the region of MCM S/N 11046 were we find a transition from the lefthand 2/3 of the board, where no wire bonds are broken, to the right-hand 1/3, where nearly all the wire bonds are broken. The text indicates the number of broken wires for each chip.

Tracker Technical Issues: MCM Encapsulant Delamination

- Electrical Test Procedure at SLAC effectively eliminates all MCMs with more than 15 broken signal wire bonds following thermal cycles.
 - Concern is additional delamination and breaking of bonds during tray and tower assembly and test
- In Tower A tray assembly, problems were seen
 - 2 MCMs screened at SLAC developed significant delaminations in tray assembly (>125 consecutive wire bonds broken)
- In Tower B problems largely eliminated
 - Used modified procedures to put MCM's on trays to avoid encapsulation delamination

Impact on Tower Production

- Tower A
 - Two trays in Tower A have large numbers of missing channels (~150 each)
 - Accepted trays to keep Tower production on schedule
- Tower B
 - Put MCM's on trays with modified procedures to avoid encapsulation delamination
 - Evidence of small delaminations
 - Order of magnitude improvement over Tower A
- Tower 1
 - Continuing to use existing MCMs on Tower 1, 2, 3 trays
 - Including full electrical screening at SLAC
 - Modified procedures and visual screening at G&A

Summary of Tower A and Tower B experience

Tower	Layer	SLAC	G&A	T-Cycle	Vibe	T/V
Α	X1	0	156	174	177	178
Α	X3	4	21	22	22	22
Α	Y3	2	128	138	140	128
Α	Y6	0	34	36	36	51
Α	X0	1	4	6	6	9
В	X5	7	13	17	No Change	
В	X0	15	17	28	No Change	
В	Y3	7	8	9	No Change	

GLAST LAT Project Tracker Technical Issues: MCM Encapsulant Delamination

- For Teledyne restart, use reject MCM's at Teledyne to evaluate new process for delamination
 - 3 non functional, nonflight MCMs assembled by Teledyne with all silicone tape removed from the process (and the fixtures cleaned).
 - purpose was just to look at the encapsulation bonding using acoustic microscopy.
 - MCMs have not yet thermal cycled
 - only cooled down from the cure temperature of 125C to room temperature
 - next we will thermal cycle them.
- 3 images already show large-scale delamination along most of the ٠ pitch adapter wire-bonding area.
 - it is puzzling that they also show massive delamination in other areas
 - the surface of the GTRC chip •
 - wire bond pads surrounding those chips ٠
 - we have never had an issue with breakage of those wire bonds.
- Not sure how to interpret these results. ٠

Tracker Technical Issues: MCM Encapsulant Delamination

- Discussions today at Teledyne
 - Results disseminated to consultants
 - Plan to be developed

Plan Forward: MCM Encapsulant Delamination

MCM Encapsulant Delamination	Status	Who	Date
1. 100% electrical screening of MCM's at SLAC	1. Done		
2. Process changes during MCM assembly on trays	2. Done		
3. 1/3/05 MRB	3. Done	RPJ	1/3/2005
4. Proceed to put existing MCM's on Tower 1,2,3	4. Recommendation of 1/3/05 MRB	Pisa	1/5/2005
5. Monitor bad channel rate during assembly and call an MRB if the number is greater than 15	5. Procedure exists	CCY	1/10/2005
6. Sonagram a sample of test run MCM's to evaluate delamination and validate process changes	6. In process; first results	CCY	1/26/2005
7. Develop and execute a plan to retire risk on existing MCM sample by thermal cycling and C-SAM to demonstrate that delamination does not propagate.	7. Needs plan	Kahn	1/31/2005

Tracker Technical Issues: PA Trace Cracking

- MCM Production at Teledyne was halted 10/1/04
 - Implement PWB bake out
 - ESD Controls
 - Variety of workmanship issues
- Teledyne restarted production 12/20/04
 - Immediately started having trouble with cracking of pitch adaptors
- Pitch Adaptor Cracking
 - 18 boards failed inspection after bonding the PA
 - every board had a large number of cracked and open traces, spanning more than half the length of the board in some cases.
 - qualitatively different from earlier runs.
- Intensive Effort to Understand the Issues

Tracker Technical Issues: PA Trace Cracking

- THIS IS THE MOST CRITICAL ISSUE FACING THE TRACKER
 AT THIS TIME
- Last month: "To stay on current tracker fabrication schedule, MCM production must ramp up to deliver 25 MCMs/week by 2/2/05"
 - We have failed
 - Tracker schedule is impacted
- Dedicated presentation on technical issues by Charlie Young after my talk

Plan Forward: PA Trace Cracking

PA Trace Cracking	Status	Who	Date
1. Assess impact of PWB edge debur	1. Done	CCY	1/5/2005
2. Evaluate PA from 2nd vendor	2. Done	CCY	1/5/2005
3. Evaluate process changes at Parlex	3. Done	RGobin	1/5/2005
4. Evaluate process changes at Teledyne	4. Done	CCY/RG	1/7/2005
5. Section Boards at GFSC and SLAC	5. In process	CCY/RG	1/31/2005
6. Meaure board radius with CMM at SLAC	6. Done	CCY/RG	1/7/2005
7. Review design to see if radius can be increased	7. Done	RPJ	1/6/2005
8. Find tool and operator history from Diamond	8. Done	Rich	1/19/2005
9. Order Diconnex Pitch Adaptors	9. Done	RPJ/CCY	1/7/2005
10. Design new assembly fixture	10. In process	CCY	2/1/2005
11. Evaluate clamping force vs breakage with Teledyne fixture	11.Done	RGobin	1/13/2005
12. Evaluate tension vs radius vs breakage with SLAC test fixture	12.Done	Rich/CCY	1/13/2005
13. Further analysis of flex circuit manufacturing at Parlex	13. In process	CCY/RG	1/31/2005
14.Plan for QC and monitoring of PWB radius	14. In process	Craig	1/31/2005
15. Plan to get pitch adaptors for MCM manufacturing	15. In process	CCY/RG	1/31/2005

Tracker Subsystem

Monthly Review, January 27, 2005

GLAST LAT Project Plan Forward in more detail (see CCY talk): PA **Trace Cracking**

PA Trace Cracking	Status	Who	Date
1. Bond new Parlex PA to PWB	1. In progress	RPJ/CCY	1/28/2005
2. Document current process	2. In progress	RG	2/4/2005
3. Restart PA production	3. Plan needed	RPJ/CCY	
4. Oversight of PA production	4. In progress	RG	On-going
5. Demonstrate entire MCM production chain	5. Plan needed	RPJ/CCY	2/11/2005
6. Design new gluing fixture	6. In progress	RPJ/CCY	2/4/2005
7. Fab and test new fixture	7. Need design	RPJ/CCY	2/18/2005
8. PA from another source	8. In progress	RPJ/CCY	2/15/2005
9. Parallel copper grain direction	9. In progress	RPJ/CCY	2/11/2005

Tracker Technical Issues: MCM Production

- To complete MCM's for 18 Towers, need to order more ASIC's
 - To date 15% loss of chips at Teledyne (under investigation)
 - Loss of 3 towers worth of MCM's from Tower 0, encapsulant delamination and other MCM problems (cracked traces, short circuits in PWB, PA delamination, etc.)
 - 1 order of 20 wafers—will barely make 16 towers
 - 2 orders of 20 wafers- will make 18 towers with spares
 - 1 order of 20 wafers is being placed
- Critical path for tracker schedule is through MCM production now
 - Aggressively pursuing options to speed up production
 - need to get started first!
 - Burn-in is currently a bottle neck

Plan Forward: MCM Production

MCM Production	Status	Who	Date
1. Make plan for pitch adaptor cracking	1. Evolving		1/5/2005
		CCY/RPJ	
2. Order parts to ensure full flight MCM	2. In procoess		1/10/2005
production, esp ASICs		CCY/RPJ	
3. Restart full production 25/week with	3. Needs PA MRB,		2/14/2005
goal of getting to 30/week	MRR	CCY/RPJ	
4. Sonagram a sample of new production	4. Procedure and		
validate process changes		CCY/RPJ	
5. Extended qual program for at least 2	5. Procedure needed		
MCMS		CCY/RPJ	
6. Increase production to >30/week	6. Plan needed		
		CCY/RPJ	

Tracker Technical Issues: Inter-ladder Strip Breakage on Heavy Trays

Description

GLAST LAT Project

- 3 different heavy trays belonging to 2 tower A trays showed signal strips interrupted at half their length
 - inferred from noise measurements (compatible with half strip capacitance)
 - seen in hitmap occupancy
- trays could not be visually inspected as they were already assembled into tower A

Monthly Review, January 27, 2005

Inter-ladder Strip Breakage on Heavy Trays : Offline Analysis

GLAST LAT Project Tracker Technical Issues: Inter-ladder Strip Breakage on Heavy Trays

- Root cause is very likely the same effect that broke wirebonds between strips and PA and led us to remove encapsulation of those wirebonds
 - We cannot remove encapsulation on ladders already built
 - Problem on heavy trays only
 - We can make ladders for heavy trays without encapsulation
- Plans forward: MRB 1/12/05 •
 - use trays as they are for tower A
 - reduce temperature ranges for thermal cycles and thermalvacuum tests:
 - Cycle Tower B trays at tower acceptance level of -15C to +45C
 - Cycle Tower 1 and beyond at acceptance level of -15C to +45C (MRB 1/24/05)
 - for Tower 1 heavy and bottom trays, fabricate ladders without encapsulation

Tracker Technical Issues: Inter-ladder Strip Breakage on Heavy Trays

- For Tower B only one tray shows evidence of this problem
 - Heavy 37 (X5) shows 61 broken channels

Tracker Subsystem

Plan Forward: Inter-ladder Strip Breakage on Heavy Trays

Inter-ladder Strip Breakage on Heavy Trays	Status	Who	Date
 Mine Perugia and Twr B data, including visual inspection of broken ladders from Perugia trays 	1.Done	Pisa	1/12/2005
2. Assemble existing analysis to understand root cause for heavy tray problems and margin for mid-trays	2. Done	Ku	1/12/2005
3. 1/12/05 MRB INFN/PI_318/319			1/12/2005
	3. Done	Pisa	
4. Proceed to make heavy trays for Tower 1			1/17/2005
	4. In process	Pisa	
5. Use analysis and prototype ladders without encapsulation to retire risk	5. In process		1/31/2005
		Kahn	

Tracker Technical Issues: Flight Cables

- Technical, workmanship and schedule performance issues identified at Parlex
 - Technical Issue:

GLAST LAT Project

Bad coupon tests indicating separations between barrel plating and internal layers

Tracker Technical Issues: Flight Cables

- Parlex
 - CAP developed for assembly process
 - Production of new flex circuits restarted
 - Water blast step after drilling seems to improve plating
 - High level of interaction with Parlex
 - Daily telecons
 - Weekly visits from QA and tracker personnel
 - Weekly QA presence for onsite source inspection
 - GSFC visit
- Currently installing cables in hand
 - Tower A has 1 cable with bad coupon (NCR closed)
 - Tower B delayed so that can install cable set with all good coupons
 - Tower 1 all good coupons
 - Tower 2 and beyond we may face decisions on installing cables with bad coupons or delaying Tower assembly
 - There is the potential Parlex will deliver new process cables in time
- All cables are fully functionally tested before installation in the Tower

Path Forward: Flight Cables

Flight Cables	Status	Who	Date
1. MRB to disposition cables for Tower A and	1. Done		1/4/2005
В		DN/PSD	
2. Complete test program for cables with bad	2. Done		1/7/2005
coupons (100 cycles -25C to +55C)		HT	
3. Fully restart Parlex	3. Done		1/7/2005
		DN/DK	
4. For Twr 1 and beyond use new	4. Twr 1 done		1/18/2005
cables/good coupons as much as possible		DN/DR	
5. Evaluate options for second sources that have been developed and develop a plan to	5. In process. Need LAT IPO approval		
mitigate downstream risk with Parlex		HS/DN	
6. Order parts to ensure full flight cable	6. In process		1/15/2005
production		DN/DR	
Tracker Subsystem P. S. Dr	ell		30

Monthly Review, January 27, 2005

Tracker Costs

• Since October rebaseline request:

GLAST LAT Project

- Assessment of additional parts needed for flight build:
 - Complete inventory of additional parts needed to complete tray production in Italy
 - Compensate for Tower 0
 - Compensate for drop out due to process development problems
 - Assessment of additional parts and fabrication costs needed for MCM production
 - Compensate for high drop out rate due to
 - » PA cracking
 - » Encapsulant delamination
 - Missing ASIC's at Teledyne
 - Inventory of parts needed to complete flight cable production
 - Large numbers of cables scrapped for workmanship issues
 - Failed coupon tests
- Assessment of costs to resolve technical issues
 - PA development prime example

Monthly Review, January 27, 2005

Tracker Costs

- Identified:
 - \$280K of additional expenses for flight build
 - not included in re-baseline request
 - assumes that tower 15 and 16 are non flight
 - Note we anticipate we will have enough non flight parts to complete tower 15 and 16 for beam test using
 - » Tower 0 trays
 - » MCM's with >15 missing channels
 - » Cables with bad coupons
 - » Reworked trays
 - This estimate increases to \$500K if we make tower 15 and 16 flight
- Cost growth a problem and anticipate further costs will need to be incurred to get MCM production ramped up to avoid further schedule delays
 - Speed up burn in
 - Ramp up production rate at Teledyne

Tracker Fabrication Schedule

- January 5 schedule showed Tracker 14 RFI 7/25/05
- Identified 2 near term threats to this schedule in January:
 - Delay in assembly of Tower 1 trays due to funding issues in Italy
 - Delay schedule due to MCM supply drying up after Tower 3 if we cannot solve PA problem and get Teledyne restarted
- MCM production is still suspended
 - Root cause of problem tentatively identified
 - Back to production plan being put in place
 - Feb 14 earliest Teledyne restart
- MCM delays will result in 5 week work stoppage in Italy after Tower 3
- With no August shutdown in Italy, Tower 14 RFI 9/13/05
 - Note since Tower 14 assembled and tested 8/5, would be tempted to skip environmental testing to avoid August shutdown.

Additional Schedule Threats

- MCM Production is on the critical path
 - Affects production at Tower 4
- Face Sheet prepreg order to make Trays at Plyform next threat
 - Order should have been made in fall once ASI contract in place
 - In December this was identified as risk to production and SLAC assumed responsibility for the order
 - Potential to affect production starting at Tower 7
- New ASIC order needed for MCM's to complete Tower 14
 - Order is placed
 - Delivery schedule not yet confirmed

Conclusions

- Arrival of Tower A a critical milestone for the tracker
- Continue to battle technical issues
 - PA problem the critical issue facing us
- Working intensively to deal with multiple schedule threats
- Concerned about growing costs
 - Currently considering making final 2 towers from non flight parts to help control costs

Tracker Thermal Cycle Ranges

		Cy	Number	
		Low	High	
МСМ		-30	85	21
Bare Panel			60	4
Tray		-30	55	4
Tower Qual		-30	50	4
Tower Acc	Old	-20	50	4
Tray		-15	45	4
Tower Qual		-20	50	4
Tower ACC	New	-15	45	4

Monthly Review, January 27, 2005

Tracker Costs

• Parts costs covered in rebaseline request:

Cable Connectors	60K
Misc Parts	120K
C-C Material	30K
TOTAL	210K

• Additional Parts for Tray fabrication in Italy (18 flight towers)

Tray Fab Parts 76K

• Additional costs for MCM parts and production (18 flight towers)

MCM Parts	232K
MCM Fab	86K
MCM TOTAL	318K

• We are substantially over rebaseline request in parts replacement

P. S. Drell

Monthly Review, January 27, 2005

Tracker Costs

• We have identified additional liens not included in rebaseline:

Tower alignment support	10K
Prepreg face sheets	34K
TMCM Bonding tool	16K
TMCM tests	10K
TMCM bake out	12K
Omnetic (suppl.)	39K
Cable Parts	22K
PA Development	40K
TOTAL	183K

• We estimate we can save 220K in parts by making last 2 towers from non-flight parts (drop outs from flight production).