

GLAST Large Area Telescope

Monthly Mission Review

LAT Flight Software Status

February 8, 2007

Jana Thayer

Stanford Linear Accelerator Center

- Builds available on LAT:
 - **B0-8-1** in lower bank (reboot trolling, LAT operations)
 - B0-6-15+ in upper bank (preserved for functional testing)
- Reboots (since January monthly):
 - More in Erik's RRT presentation
 - "Lost Decrementer Interrupt."
 - EPU0 at 2007-01-26 08:17:14 ~80 seconds into first 30-minute muon run.
 - EPU1 at 2007-01-27 10:46:22 with system idling for hours after initial boot.
 - EPU1 at 2007-02-06 10:45:00 during datataking after several hrs of running
 - EPU0 at 2007-02-07 09:36:44 with EPU idling during LCI run
 - EPU0 at 2007-02-08 07:13:26 late into a muon run after ~19 hrs of running
 - "Caching unexpectedly enabled for PowerPCI bridge chip registers."
 - EPU0 at 2007-01-27 07:41:29 with system idling during ACD front-end power-up.
- B0-9-0: stable build to carry us into Observatory CPT. Includes --
 - Work around to lost decrementer problem
 - VXW with write-through/write-back selection implemented as telecommand
 - Compression fixes
- B1-0-0: GRB algorithm
 - Serialized behind reboots
 - Identifying needs for testing of algorithm and interface

Lost decrementer interrupt

- (Very) Late breaking news:
 - This problem is a bug in the design of the original MPC750.
 From the MPC750 user's manual:
 - "No combination of the thermal assist unit, the decrementer register, and the performance monitor can be used at any one time"
- We are using the thermal assist unit and decrementer at the same time!
 - The workaround is a trivial fix
 - Documented in JIRA FSW-863
 - Project CCB approval for FSW-863?

Build 0-9-0

Key	Package Affected	Summary
FSW-857	VXW	Revert RAD750 cache configuration to write-back
FSW-863	PBS	Lost decrementer interrupt
FSW-861	PBS	Incorrect initial processor frequency/period assignment
FSW-860	PBS	WUT_sys_adjust does not properly calculate its return value
FSW-850	PBS	In the PL queue routines, inserting a queue element can disable interrupts
FSW-800	PBS	LHK stopped sending telemetry
FSW-831	EDS	Event packet reassembly code review issues
FSW-844	Compression	Segmentation fault during event decoding
<u>FSW-842</u>	Compression	Error decoding format 4/5 events
<u>FSW-744</u>	THS	Incorrect CCSDS header timestamps on EPU1 LSEP datagram
FSW-802	THS	CTDB Bus timeout messages time tags 4.2 seconds fast
<u>FSW-843</u>	LIM, LPA	Modify LIM behavior to favor ARR over TOO and to always obey LPASTART and LPASTOP
<u>FSW-837</u>	LIM	Lack of task pointer check prior to invoking ITC_detachRaw
<u>FSW-862</u>	LHK	CCSDS Header sequence counter always 0 for EPU HSK packets

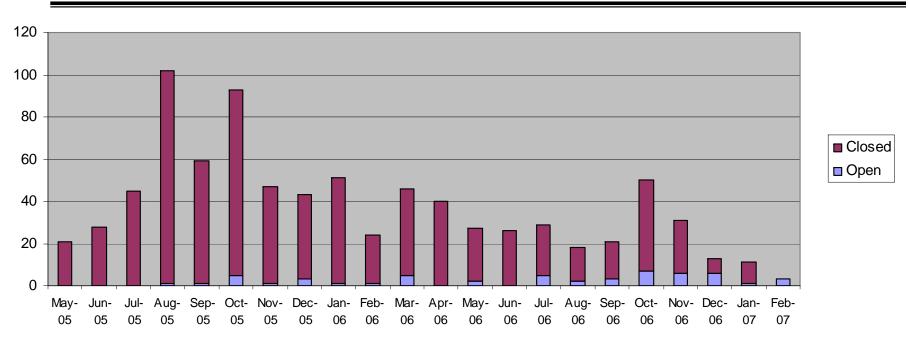
- Stable FSW baseline that includes:
 - Reboot workarounds identified in the next week
 - Fixed compression (error rate < 1 in 80 x 10⁶ muon events)
 - Interrupt trace capability (already in place)
 - VXW write-through mode essential for debugging reboots, but
 - There is a performance hit associated with using it
 - Combined with short interrupt latency and increased execution time of interrupt dispatch tracing, can cause VxWorks work queue panic (reboot)
 - If we run VXW in write-back mode, we cannot diagnose reboots

8 February 2007

LAT instrument time and B0-9-0 release

- We have been given seven future 8 hour shifts on the instrument.
- Use this time to troll for reboots (2/8 2/9), install B0-9-0 (2/19 2/20), test B0-9-0/troll some more (2/20 2/23)
- Expected availability of B0-9-0: week of 2/19
 - Code completion:
 - PBS fixes complete by ~2/12
 - Compression fixes released by ~2/15
 - THS fixes complete by ~2/15
 - LHK fix complete by ~2/12
 - VXW, LIM and all other JIRAs complete
 - Roll build: 2/15
 - Regression test: 2/15 2/19
- Upload to LAT
 - Time to upload VXW + FSW can be reduced to 2 shifts or less with LICOS_Scripts changes (LCS-222, LCS-223): 2/19 2/20
- Regression test/troll for reboots 2/20 2/23
 - Perform "standard" datataking loop that includes LCI and muon runs in config 1
 - Include LIM mode test
 - Enable VXW write-through mode
 - Will gladly accept any additional time given to troll for reboots/regression test

- Implementation of GRB algorithm can be split up into three pieces:
 - Internal FSW infrastructure for handling a GRB (complete)
 - GRB algorithm detecting a burst (work in progress)
 - Algorithm has been available for some time
 - Porting the algorithm to an onboard environment has begun
 - Infrastructure for testing GBM/LAT interface
 - Some thought and effort required to implement
 - Need to include features such as
 - Ability to enable/disable GRB algorithm
 - Ability to trigger algorithm via telecommand or other external stimulus so we can test interface with the GBM
 - FQT test to be written using testbed/FES



B1-0-0 JIRAs

Key	Summary	Fix Version/s
FSW-582	Capture of layer splits in LATC does not consider the FE mode registers	B1-0-0
FSW-292	Implement GRB detection algorithm	B1-0-0
FSW-693	Command confirmation configuration report	B1-0-0
FSW-732	Task messaging configuration report	B1-0-0
FSW-576	Bug in CAL data compression algorithm	B1-0-0
FSW-789	LCI event data is inconsistent if TEM errors or diagnostics present	B1-0-0
<u>FSW-456</u>	EMP and LCM do zlib compress with malloc/free, should use MBA_alloc/free	B1-0-0
FSW-811	Modify the sample parameters of the Gamma, MIP, and Heavy Ion filters	B1-0-0
FSW-841	Implement enumerations in LCAT so they're part of the T&C database	B1-0-0
FSW-808	Problem enabling periodic triggers	B1-0-0
FSW-747	Correct two separate errors with the extended counters	B1-0-0
FSW-723	LATC (and RIM) XML contains duplicate tag names	B1-0-0
<u>FSW-164</u>	Add LATC Telecommand Interface to LIM	B1-0-0

JIRA Metrics as of 5 February 2007

- Open issues are divided as follows
 - 6 planned for B0-9-0
 - 13 planned for B1-0-0
 - 8 planned for B2-0-0 (post L+60)
 - 13 deferred indefinitely
 - 14 unscheduled
 - 11 being assessed by FSW team
 - 3 awaiting Project CCB adjudication

8 February 2007

Test bed vs LAT Reboot Investigations

Eric J. Siskind (as munged by wnjohnson and jbthayer)

8 February 2007

- The LAT is sufficiently complicated that it cannot even digitally reproduce its own results
 - LAT contains multiple asynchronous clocking domains whose frequencies are not phase locked
- None of the strategies discussed is without some cost, often involving highly-skilled manpower for an extended period of time

- Premise: the processing of specific events generated by LAT through FSW leads to memory corruption which ultimately results in a watchdog reboots – EPU only
- Issue: Reboot frequency statistics
 - Assuming ~200 hrs of ops between reboots and 500 Hz event rate on ground, then you we are seeing 1 failure per 3x10^8 events.
- Consequence:
 - To reproduce reliably on test bed, need ~1x10^9 events (3σ)
 - Exceeds capabilities of the test bed FES by factors of 4 5. (designed for 1 orbit at 10kHz)
 - Repeatedly playing the same small sample does not help
- Problems:
 - Monte Carlo sim of 1x10^9 ground muon events is not trivial
 - No guarantee that MC captures the complexity (zoo) of the events seen by LAT

Data-Driven Reboots (cont)

- Mitigation
 - Use events captured by LAT in testing and transmitted to the SSR
- Strategy:
 - Push event data from LAT (passthru filter) thru the test bed
 - Focus on datagrams from EPU just prior to reboot
- Problems:
 - the event or event sequence that caused the reboot may not have been packaged in a datagram and made it out of LAT to the SSR before reboot occurred.
 - Recent running of LAT has been with gamma filter to reduce data volume (for dump and storage issues)
 - this reduces the complexity and rate of events into the SSR.

- Test bed DAQ side is logically an identical copy of the LAT DAQ system
- Test bed FES (front end simulator) is NOT a simulation of TKR, CAL or ACD
 - Provides trigger primitive timing
 - Provides event data formatted as by subsystem
 - Does not simulate readout latencies from TACK.
 - Does not simulate subsystem command register actions or impact on data content. Readback is copy of what was commanded.
- Consequently, test bed FSW validation is a NECESSARY but not SUFFICIENT condition to guarantee successful operation on LAT.

- FSW validation step w/ fully functional DAQ system
 - Necessary but not sufficient
- FSW performance and margin testing with respect to compute cycles in SIU and EPUs
- With FES capabilities, the primary tool to verify FSW and DAQ performance at flight-like trigger rates
 - Study dead time, buffer occupancy, data transfer cycles

The test bed and FES were not designed to be a high fidelity simulation of the LAT and the complexity of its detectors.

EM RAD-750 boards in test bed use cots MPC-750 processors

- Issues
 - BAE cache functionality errata
 - Potential other unknown problems in interactions w/ bridge chips
- Mitigation
 - Upgrade test bed EM RAD-750s to the v1.05 RAD-750 processor chips – either flight or rumored non flight versions
 - But, if problems are software, this doesn't help
- Plan Forward
 - Bring LAT spare flight crate(s) into dataflow lab
 - Set up on uber teststand
 - Upgrade EM boards on test bed???
- Caution: putting flight processors on the testbed will not necessarily help diagnose reboots:
 - Need to know how to use the flight hardware to reproduce a reboot
 - Don't know: is problem hardware? Data driven? Can it only be reproduced if we run identically to LAT?
 - Need tools in place to capture breadcrumbs left behind after a

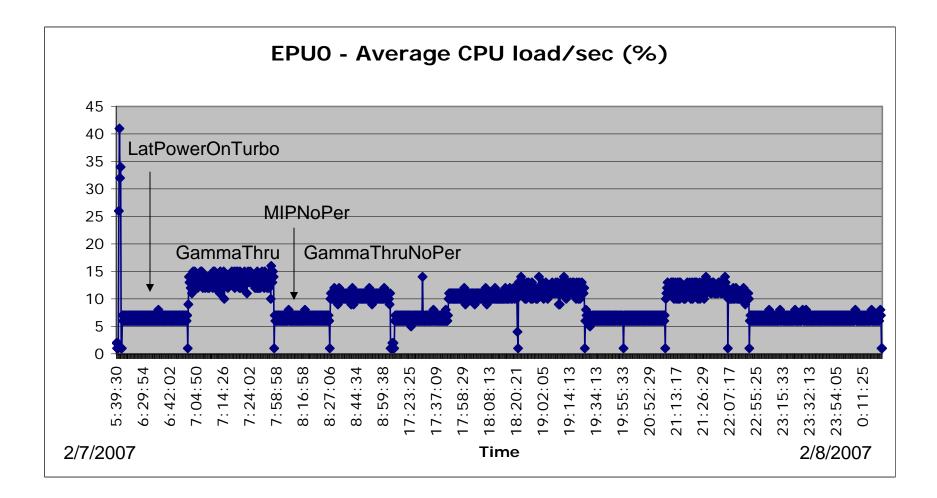
8 February report

FES (front end simulator) is NOT a simulation of TKR, CAL or ACD

- Mitigation
 - Set up Calibration Unit in dataflow lab
- Plan Forward
 - Get CU back to SLAC and running in dataflow lab
 - Develop configurations and tests for CU
 - LCI and muon runs
 - Estimate for arrival and operation of the CU is ~ 1 month (Eduardo)
- Caution: do not have full 16 towers on CU

The SDRAM organization in the EM processor board is slightly different from that in the flight board.

- Issue
 - Only known potential impact relates to erratum #24 from BAE. (maximum bank active timeout)
- Mitigation
 - Disable the timeout feature. We did but have seen at least one watchdog reboot in this configuration.
- Path forward
 - Don't believe this is difference is significant


- All test bed DAQ ASICS are the same revision as flight ASICS
- All test bed FPGAs have the same revision of VHDL as the flight FPGAs
 - Test bed and flight FPGAs target different FPGA families but logically (clock tick by tick) they function the same.

B0-8-1: EPU0 CPU Load (write-through)

