

LAT System Engineering

GLAST Large Area Telescope:

LAT System Engineering

Pat Hascall SLAC System Engineering

GSFC Monthly, 30 June 2005

Topics

- Action Item Status
- Technical Baseline Management
- Issues
- Interface Control Documentation
- RFA Closure
- Key Metrics
- Risk Management

Monthly Action Item Status

Action Item ID Actionee		Description	Status	

GLAST LAT Project GSFC Monthly, 30 June 2005 Technical Baseline: Flight Drawing

Release

- Status details
 - Tracker
 - 141 of 141 released
 - ACD
 - Completed
 - Calorimeter
 - Completed
 - Mech
 - Completed 66 of 73
 - 3 MLI drawings in work
 - Remaining 4 drawings (shims and spacers) are needed in for radiator fit check (August earliest)
 - Design Integration
 - Major drawings: 4 of 6 signed off
 - DAQ
 - 300 of 300 released

Issues

No.	Description	Status	Due Date	Actionee
3	Technical	-All drawings to be under CM prior to flight	Weekly	P. Hascall
	baseline: Flight	build	Review	
	Drawing release	-Flight drawing release plan generated and		
		statused weekly		
22	ASIC radiation	Radiation testing scheduled for completion.	30 April -	Sadrozinksi
	testing status	First round of tests complete, 2 documents	>June->Jan 05	
		in preparation. Request to eliminate TID	>March 05	
		for 3 rd and 4 th GTFE run		
31	Tracker flex cable	Process change implemented. Coupons from	10/15/04-	Rich
	coupon failures	flight panels failed. Steve Kahn assigned to	>11/5>1/31	
		work with Parlex on quality and schedule.		
		Pioneer having difficulty with anular ring		
		specs.		
35	Reliability	FMEAs done, reviews with Subsystems	12/31/04	DiVenti
	assessments not	started. Held TKR and Mech reviews with		
	completed	SLAC, TPS, GASU and PDU held on 5/13.		
		Updates to FMEA provided on 5/21. In		
		review at ELX		
37	SIB EEPROM	PCB approved enough parts for flight build,		Haller
	DPA Failure	still working parts for spares and qual		

Issues (continued)

No.	Description	Status	Due Date	Actionee
38	RAD750 heat sink	Heat sinks reworked and Omnirel regulators		Haller
	and Omnirel alert	to be replaced.		
40	LAT-DAQ FPGA	SLAC to respond to AIs' from FPGA reviews		Haller
	development and	– AI's in review		
	qualification			
41	Qualification of	Results still in test		Haller
	ERNI connectors			
43	TEM/TPS voltage	Combination of hardware test and modeling		Haller
	ripple	in process to determine cause and potential		
		fixes. Cause and corrective action		
		determined, retrofit in process. Replacement		
		of 2 installed TPS to be determined		

Interface Management

LAT System Engineering

GLAST LAT Project

Interface Document Status

- SC-LAT ICD ICN Status
 - LAT signed this month
 - ICN-090 LAT Current Transients
 - Currently under signature review
 - None
 - Currently in draft or revision
 - ICN-087 LAT Deliveries Table
 - ICN-0XX LAT Survey Feature Locations and Access Requirements
 - ICN-0XX Location and Access Requirements for LAT test connectors, auxiliary cooling inlet/outlet and purge ports.
 - ICN-0XX MLI Interface
- Internal LAT ICD's
 - Signed off this month
 - ACD-LAT ICD
 - Currently in signature review
 - None
 - Currently in update
 - Electronics-LAT ICD (Comments being incorporated as they are received)

GLAST LAT Project

Deliverables/Receivables

- LAT Deliverables
 - June: None Scheduled
 - July: None Scheduled
 - Aug: None Scheduled
 - Sept: None Scheduled
- LAT Receivables
 - June: None Scheduled
 - July: SC Interface Tool, SC-LAT Flexure Pins
 - Aug: None Scheduled
 - Sept: None Scheduled

LAT Level Verification Status

	Verification Method				Doquiromonts			
Category	Test	Demonstration	Analysis	Inspection	Children	KC	yun eme	
	# Complete	# Complete	# Complete	# Complete	# Complete	# Comp	Total	% Comp
Requirement Identified	-	-	-	-	-	430	430	100.0%
Flow Down Complete	-	-	-	-	-	354	430	82.3%
Draft Verification Plan	169	46	85	23	4	327	430	76.0%
Final Verification Plan	0	0	20	0	4	24	430	5.6%
Verification Plan Executed	0	0	0	0	4	4	430	0.9%
Requirement Sold	0	0	0	0	4	4	430	0.9%

- Metrics above have been generated to track LAT requirements flow-down, verification, and sell-off.
- Requirements from NASA's Level 2a documents 433-SRD-0001, 433-MSS-0001, and 433-IRD-0001 and Spectrum Astro's 1196 EI-Y46311-000C LAT-SC ICD have been incorporated into LAT's version of DOORS.
- This has resulted in additional Level 2b requirements.
- Flow down of the Level 2b requirements is nearing completion, with only the LAT-SC ICD requirements remaining to be flowed.
- A Verification Compliance Requirements Matrix (VCRM) has been generated and is in the process of being updated with verification methods.

Key Design Metrics

LAT System Engineering

Mass and Power Status Summary

- Mass
 - Formal update complete
 - Mass estimate increased by 0.2kg
 - Z Center of mass increased by around 3mm, with remaining margin of around 18mm
- Power
 - No change to budget
 - LAT Power Consumption Estimate has increased by 21.7 W
 - Contributors are Tracker, TPS, PDU, and Calorimeter
- FSW estimates updated
 - Boot PROM replaced by EEPROM, single copy is less than 25% of capacity with multiple copies to fill memory used as risk mitigation
 - EPU CPU cycle loading estimates went from 30% to 40%

Alloc. 530.0 GSFC Monthly, 30 June 2005

LAT Mass Status

LAT Mass Status Report	LAT-TD-00564-11
LAT Mass Status	Effective Date: 2-Jun-05
Martin Nordby	Print Date: 29-Jun-05

Mass (kg)	Estimate
TKR	523.6
CAL	1382.3
ACD	277.6
Mech	355.7

CAL	1382.3	1440.0
ACD	277.6	295.0
Mech	355.7	386.6
Elec	232.0	240.0
Systems	7.5	8.0
LAT Total	2778.7	2899.6
Rsrv/Margin	221.3	
Rsrv/Margin*	8.0%	
Allocation		3000.0

* AIAA G-020 recommended min reserve = 4.7% Allocations per latest mass CCB on 3 Nov 2004

Center of Mass (mm)						
CMx	-1.06	-20 < CMx < 20				
CMy	-0.87	-20 < CMx < 20				
CMz	-69.32	CMz < -51.2				
Ht off LIP	166.88	Ht < 185				
Second Moment of Inertia (kg-m ²)						
lxx	1061.3	1400.0				
lyy	1013.6	1350.0				
lzz	1398.4	1580.0				

Mass Estimate Breakdown					
	%				
Parametric	56.3	2.0%			
Calculated	121.8	4.4%			
Measured	2600.5	93.6%			
Total	2778.7	100%			

GSFC Monthly, 30 June 2005

LAT Power Status

LAT Power Consumption Estimate has increased by 21.7 W.

8-Jun-05	Estimate	PARA	CALC	MEAS	SPEC
Item	(Watts)	(Watts)	(Watts)	(Watts)	(Watts)
ACD	11.5	2.4	3.9	5.2	11.5
Tracker	157.9	0.0	0.0	157.9	160.0
Calorimeter	67.7	0.0	0.0	67.7	71.0
Trigger & Data Flow	331.6	43.2	72.3	216.1	327.5
Grid/thermal	20.4	20.4	0.0	0.0	35.0
Instrument Total	589.1	66.0	76.2	446.9	605.0
Instrument Allocation	650.0				
% Reserve	10.3%		700.0		

PARA - Best Estimate based on conceptual design parameters **CALC** - Estimate based on Calculated power from detailed design documentation **MEAS** - Actual power measurements of components

Goals estimated using guidelines given in ANSI/AIAA G-020-1992 "Estimating and Budgeting Weight and Power Contingencies for Space Craft Systems"

•TKR Estimate increase by 11.0 W based on average of measured modules. TKR Spec increased by 7 W.

•CAL Estimate increase by 0.3 W based on average of measured modules.

•T&DF Estimate increase by 10.4 W; 6.9 W due to TPS inefficiencies, 3.5 W due to flight PDU measurement.

PDR Reserve Was 15.2% CDR Reserve Was 13.4%

Goal for PSRR Reserve > 5%

GLAST LAT Project

Measured LAT Power

LAT Tower Power	Unit Current (A)	Unit Power (W)
TWR 0	0.954	26.72
TWR 1	0.954	26.72
TWR 4	0.967	27.08
TWR 5	0.966	27.05
TWR 8	0.967	27.08
TWR 9	0.966	27.05
TWR Total	5.775	161.70
TWR Avg	0.963	26.95
Tower Variance	0.013	0.36

16 Tower Estimate	431.20
Orig 16 Tower Estimate	414.88
Estimated 16 Tower Increase	16.32

TEM/TPS Assembly Power Consumption				
Estimate		12.94	Watts	
Serial #	Cold	Ambient	Hot	
GLAT1754[1]				
GLAT1752	8.97	10.73	10.36	
GLAT1753	11.25	11.16	13.35	
GLAT1832				
GLAT1833				
GLAT1834				
GLAT1835		9.98		
?				
?				
?				
?				
?				
?				
?				
?				
?				
?				
Average	10.11	10.63	11.86	
LAT Estimate	161.69	170.00	189.71	
[1]	Qualificatio	n Unit		

vstem	Engi	neerina	
ystem	Lingi	neering	

Estimate		4.21	Watts
Serial #	-30	25	50
FM101 [1]	4.48	4.12	3.96
FM102	4.59	4.22	4.06
FM103	4.60	4.24	4.07
FM104	4.59	4.25	4.07
FM105	4.55	4.22	4.02
FM106	4.61	4.21	4.05
FM107	4.53	4.25	3.99
FM108	4.56	4.23	4.05
FM109	4.58	4.23	4.05
FM110	4.61	4.26	4.08
FM111	4.61	4.26	4.08
FM112	4.60	4.25	4.07
FM113	4.62	4.25	4.10
FM114	4.59	4.22	4.06
FM115			
FM116			
FM117			
FM118			
Average	4.58	4.23	4.05
LAT Estimate	73.26	67.69	64.80

- 1. Tower measurements for bays ٠ 0,1,4,5,8,9 are consistent and above predicts
- 2. Measured Tower data indicates a • 16.3 W increase in LAT power consumption which is supported by TKR, CAL, TPS unit level data (10.1W + 0.3W + 6.4W = 16.8W).

Tracker Modu	le Power Consumption
Estimate	9.18
Serial #	Ambient
A [1]	9.70
В	9.80
1	9.87
2	9.80
3	9.90
4	9.86
5	10.15
6	
7	
8	
9	
10	
11	
12	
13	
14	
Average	9.87
LAT Estimate	157.90
[1]	Proto Flight Unit

Proto Flight Unit

LAT Power Status (Continued)

Survival Power

Component	Current	t Subsystem Power Estimates (W		(W)		
	Alloc.	PARA	CALC	MEAS	Total	Margin
On-Orbit Average Power Total ¹	278.00	0.00	203.00	0.00	203.00	36.90%
Regulated VCHP Power Total	58.00	0.00	43.00	0.00	43.00	34.90%
Unregulated Passive Survival Power	220.00	0.00	160.00	0.00	160.00	37.50%

¹Power estimates reflect the LAT steady state orbit average. Numbers do not reflect transition into or out of survival mode, i.e. early orbit operations.

FSW Resource Usage Current Estimates

Resource	Total Available	Current Usage	Margin Factor
EPU Boot EEPROM (SUROM)	256 kB	<64 kB*	4*
SIU Boot EEPROM (SUROM)	256 kB	<64 kB*	4*
EPU EEPROM	6 MB	1.5 MB	4
SIU EEPROM	6 MB	1.5-2.5 MB	3
EPU CPU cycles	200% in 2 EPUs	40%	> 5
SIU CPU cycles	100% in 1 SIU	25%	4
EPU memory	128 MB	16-32 MB	4-8
SIU memory	128 MB	< 16 MB	8

* Storing multiple copies (4 currently to use available memory) for risk mitigation

Instrument Bandwidth Resources

• LAT communication, bandwidth (BW) in Mbyte/sec

GLAST LAT Project

Resource	Max Total BW limited by Hardware	Max limited by SC- ground transmissi on	Ave current BW at 10 KHz max trigger rate*	Ave current BW at 2 KHz nominal trigger rate*	Margin Factor (for 10 KHz rate)
Detector to GASU-EBM	45	N/A	10	2	4.5
GASU-EBM to EPU-CPU	20	N/A	5	1	4
EPU-CPU to GASU-EBM	2.5	0.075	0.04*	0.02*	2
GASU-EBM to SIU-CPU	5	0.15	0.08*	0.015*	2
SIU-CPU to Spacecraft	5	0.15	0.08*	0.015*	2

* Present performance of event filter for EPU-CPU, still being optimized. Eventually the physics filter will be adjusted/loosened to take advantage of the max average bandwidh

EBM: Event-Builder Module

EPU: Event-Processing Unit

SIU: Spacecraft Interface Unit

Key Science Performance Metrics

Parameter	SRD Value	Present Design Value
Peak Effective Area (in range 1-10 GeV)	>8000 cm ²	10,000 cm ² at 10 GeV
Energy Resolution 100 MeV on-axis	<10%	9%
Energy Resolution 10 GeV on-axis	<10%	8%
Energy Resolution 10-300 GeV on-axis	<20%	<15%
Energy Resolution 10-300 GeV off-axis (>60°)	<6%	<4.5%
PSF 68% 100 MeV on-axis	<3.5°	3.37° (front), 4.64° (total)
PSF 68% 10 GeV on-axis	<0.15°	0.086° (front), 0.115° (total)
PSF 95/68 ratio	<3	2.1 front, 2.6 back (100 MeV)
PSF 55°/normal ratio	<1.7	1.6
Field of View	>2sr	2.4 sr
Background rejection (E>100 MeV)	<10% diffuse	6% diffuse (adjustable)
Point Source Sensitivity(>100MeV)	<6x10 ⁻⁹ cm ⁻² s ⁻¹	3x10 ⁻⁹ cm ⁻² s ⁻¹
Source Location Determination	<0.5 arcmin	<0.4 arcmin (ignoring BACK info)
GRB localization	<10 arcmin	5 arcmin (ignoring BACK info)

Risk Management

LAT System Engineering

GSFC Monthly, 30 June 2005

Risk Management Activity

• No changes

ID #	Risk Rank	Risk Description	Risk Mitigation	Status
Proj Mgt - 002	Moderate	If ASICs fail to meet qualification requirements; then schedule impact will occur	 Focused review & test. Margin for re-runs protected where possible Individual risks Identified by subsystem Extensive use of DAQ test bed to drive out system issues 	 Cal/ACD ASIC's continued testing Test Bed operating No new issues
Proj Mgt - 004	Moderate	If TEM Power supply fails qualification; then final implementation may exceed schedule impacting delivery to I&T	 Key focus item identified for DAQ TEM/PS extensive EM use as EGSE 	 Implementation plan in place and proceeding Fuse audit completed Testing complete, data package in work

ID #	Risk Rank	Risk Description	Risk Mitigation	Status
SE-007	Moderate	If a critical component fails post LAT integration; then de- integration will result in cost & schedule impact	 Extensive use of EM test bed to support flight H/W & S/W development Thorough qualification and acceptance tests Pre planned I&T actions for de- integration 	 Qual & acceptance planning in-place I&T developing re- work contingency plans. Integration plan baselined
Elec- 004	Moderate	If target hardware, requirement development or manpower is delayed; Then Flight-Software development schedule will be impacted	 Detailed incremental development program Ensure sufficient software test on target hardware during development to drive out any requirement disconnects. Include adequate peer reviews before each spiral cycle prior to release Include monthly Demos to verify functionality/measure progress 	 Adapting monthly demos Tracking EGSE resource utilization Updated detailed test plan released Demo frequency increased from monthly to approximately weekly

ID #	Risk Rank	Risk Description	Risk Mitigation	Status
Proj Mgt - 005	Moderate	If parts and vendor orders are delayed or bids exceed expectations; then flight production costs & delivery schedule will be impacted	 Manufacturing engineer added to expedite minimum cost closure Clarification and purchase package review to ensure accurate bids Increase production management staff 	 Purchase order tracking/monitoring system in place to highlight roadblocks Design documentation release plan prioritized by vendor selection and component fabrication need dates Workarounds implemented for late parts Hired additional head to manage production
IT - 006	Moderate	If logistic or facility integration issues are found during LAT environmental test program; then re-work will delay schedule	 LAT I&T to plan a roadmap of activities from LAT building 33 to completion of environmental testing LAT I&T to consider and develop opportunities to path find key activities required prior to LAT shipment to NRL 	 Follow up Environmental Planning TIM held on 1 October at SLAC, I&T driving Als to conclusion Continuing periodic TIMS,

ID #	Risk Rank	Risk Description	Risk Mitigation	Status
SE - 011	Low	If individual tracker towers do not meet performance requirements due to manufacturing issues (e.g. wire bond breaks) then the LAT may not meet science requirements	Understand stability of performance to determine mitigation strategies Limit LAT temperature excursions to minimize possible propagation of some types of tracker issues Optimize placement of towers based on individual tower performance to minimize science effects and to minimize removal and replacement efforts should they become necessary	Temperature range reduced at the LAT level to allow a narrower range during Tracker and LAT tests Alternate plan for placement of Tracker A and B being implemented

GSFC Monthly, 30 June 2005

Cost Report

Reporting Category	Cost Incurred				Estimated Cost			Estimated Final Cost		Unfilled Orders
	During Month		Cum. to Date		Detail		Balance of	Contractor	Contract	Outstanding
	Actual	Planned	Actual	Planned	JUN05	JUL05	Contract	Estimate	Value	
4.1.2 SYSTEM ENGINEERING										
4.1.2.1 REQ'TS MGMT, DESIGN INTEGRATION & TEST	29	140	3,107	3,253	0	0	146	3,253	3,253	0
4.1.2.3 SYSTEM ANALYSIS	24	10	1,040	991	11	10	-26	1,034	1,034	0
4.1.2.4 QUALIFICATION & TRACKING	104	59	537	448	62	56	34	689	689	10
4.1.2.5 RISK & RELIABILITY ANALYSIS	0	0	99	98	0	0	-1	98	98	0
4.1.2.6 CONFIGURATION MGMT & DOCUMENT / DATA LIE	11	9	291	285	10	9	12	321	321	0
4.1.2.7 MANAGEMENT & PLANNING	100	60	2,004	2,088	52	49	147	2,252	2,252	0
CAPW[3]Totals:	269	278	7,078	7,163	134	124	311	7,647	7,647	10

GSFC Monthly, 30 June 2005

Cost Variance Explanation

- Why overrun/underrun?
 - Cumulative underrun due to invoicing delays
- What will be done to correct?
 - No correction necessary

GSFC Monthly, 30 June 2005

FTE Report

LAT System Engineering

FTE Variance Explanation

- Why overrun/underrun?
 - Production manager left, some vacations
- What is the impact?
 - Need to maintain production oversight
- What will be done to correct?
 - Keeping Russell Patterson on longer than originally intended