

28 September 2006

GLAST Large Area Telescope

Monthly Mission Review

LAT DAQ and Flight Software Status

September 28, 2006

Jana Thayer

Stanford Linear Accelerator Center

GLAST Monthly FSW

- Incorporates all changes in FSW since May 18, 2005 (B0-6-9)
 - 100 JIRAs resolved, addressing bug fixes and defects
 - Several changes to the C&T database necessitated LICOS release
- B0-6-12
 - Built on 9-15-06
 - Full FSW FQT regression test run 9-15-06 to 9-19-06
 - I&T regression testing 9-19-06 to 9-24-06
 - Installed on LAT 9-25-06
- Installation
 - Burned 9.5/10 banks without problems
 - Disk full error from /ee1
 - TRC LATC_verify error came back

- During upload of B0-6-12 to redundant SIU(siu0) /ee1, encountered a disk full error
 - Each bank is 3 MB = 1 MB (boot partition) + 2 MB (TFFS)
 - Files get uploaded to the file system (TFFS) = 2 MB
 - Used (bytes) includes B0-6-12
 - SIU1 (primary SIU) is shown for comparison

SIU/bank	Used (bytes)
Siu0/ee0	1720523
Siu0/ee1	1842360
Siu1/ee0	1527173
Siu1/ee1	1581504

B0-6-12 installation: disk full error (cont)

- History of file management on flight crates
 - Crate production happened over several months
 - SIU0 was the first crate to go through ELX testing
 - ELX test code in ee1 (predates FSW builds, FMX, LICOS)
 - ee0 was reserved for I&T
 - EEPROMs did not get formatted before hand-off to I&T
 - Contains all builds from B0-6-6 to B0-6-12
 - Crates handed off to I&T with the "latest" build
 - Once format command was available, re-formatted EEPROMs and loaded latest build before handoff to I&T
- SIU0, being the first crate, has more files on it than the other crates
- Builds are always loaded into both ee0 and ee1
 - I&T (LICOS) predominantly boots from ee1

B0-6-12 installation: disk full error (cont)

- Enter FMX and LICOS
 - FMX is the database that tracks files uploaded to the LAT
 - When FMX was first introduced long after crate production and the first FSW builds were complete, it was *not* integrated with LICOS and did not have any knowledge of the history of each of these crates.
 - An effort was made to populate FMX with the builds that were uploaded to the LAT by I&T
 - This "history" was put into FMX by hand
 - ELX uploads were not always included
 - Consequently, more files exist on the LAT than exist in database

B0-6-12 installation: disk full error (cont)

- FMX and LICOS today
 - From now on the tool that uploads or deletes files on the EEPROMS is inextricably linked to FMX
 - File uploads are an automated process, and any file that gets put on the LAT must go through FMX
 - FMX and LAT upload operations happen synchronously
 - All present and future uploads will be tracked by FMX
- As of several weeks ago, a feature was put into fmx to determine how much space is taken up on the EEPROM
 - This feature has not migrated to LICOS yet
 - Ideally, the script doing the uploading would query fmx to determine whether there is enough space on the EEPROMs to put the build on before uploading:
 - Existing files + new build <= 2MB?
 - This tool will exist when we launch
 - Integrate with ITOS, FMX, activities database, MOOT/MOOD
- Onboard FSW tools also available to check TFFS

28 September 2006

B0-6-12/13: TRC LATC verify error

- TRC LATC verify error root cause (known issue from TKR subsystem):
 - The tracker readout controller (TRC) chip has a flaw in that it does not have a clean power up state. Occasionally upon power up, the chip cannot accept commands. The only way to reset the chip is to pull on TRC reset line.
 - Issue a commanded reset to the tracker cable controller (TCC) in the TEM (one layer up) immediately after power up
 - This feature was being worked around using LATTE since 1st tower
- **History of fix:** ۲
 - Originally fixed by issuing reset in LICOS during power up script
 - Once LATC was installed on LAT --
 - LATC configured TCC, TRC, and TFE to known, non-zero values
 - LICOS subsequently issued TCC reset and cleared everything
 - This had the effect of clearing the timeout register on the TCC after it had already been set by the FSW. Not good.
 - Moved the reset into the FSW (FSW-559)
 - Later, in response to a separate LATC verify error, a reset to the CAL readout controller was added to the FSW
 - At this time, code was restructured and the desired TCC reset turned into a TRC reset (not a HW reset, so it doesn't work)
- Known bug, known fix. Recognized almost immediately. Will be fixed in B0-6-۲ 13, installed Thursday PM. 28 September 2006 **GLAST Monthly FSW**

Tested: ability to roll back to B0-6-9

- LAT can be booted into either B0-6-9 or B0-6-12
 - B0-6-9 and B0-6-12 files are present in the file system of both banks of all processors
- To switch between builds, upload a new secondary boot script to each processor
 - Started in B0-6-12
 - Switched to B0-6-9
 - Uploaded B0-6-9 secondary boot script
 - Secondary booted using the B0-6-9 boot script
 - Message log indicated that B0-6-9 was running
 - Switched back to B0-6-12
 - Uploaded to B0-6-12 secondary boot script
 - Secondary booted using the B0-6-12 script
 - Message log indicated that B0-6-12 was running
- Currently, all secondary boot scripts are B0-6-12

B0-7-0 status

- Difference between B0-6-13 and B0-7-0 is compression
- Compression encode/decode of normal (zero-suppressed, single-range readout) complete and tested
 - Compression factor is slightly >3 on Gamma sample
 - Smaller events compress by a factor of 4-5
- Remaining work
 - Verify that "checker" is working correctly, ~2 days
 - Pedestal type events, ~1 day
 - 4-range, zero-suppressed events (ACD and CAL), ~3 days
 - Encoding side is written
 - Decoding side (on the ground) is not
 - Run on testbed to check for errors and performance measurement, 5 days
 - Budget for encoding an event is 2 ms
 - Can be performed in parallel by developer not on critical path
- Success-oriented schedule (assumes that testing turns up nothing)
 - If no other bugs turn up, could be ready by 10-4-06
 - Upload to LAT 10-6-06

28 September 2006

B0-7-0 status

- Difference between B0-6-13 and B0-7-0 is compression
- Compression encode/decode of normal (zero-suppressed, single-range readout) complete and tested
 - Compression factor is slightly >3 on Gamma sample
 - Smaller events compress by a factor of 4-5
- Remaining work
 - Verify that "checker" is working correctly, ~2 days
 - Pedestal type events, ~1 day
 - 4-range, zero-suppressed events (ACD and CAL), ~3 days
 - Encoding side is written
 - Decoding side (on the ground) is not
 - Run on testbed to check for errors and performance measurement, 5 days
 - Budget for encoding an event is 2 ms
 - Can be performed in parallel by developer not on critical path
- Success-oriented schedule (assumes that testing turns up nothing)
 - If no other bugs turn up, could be ready by 10-4-06
 - Upload to LAT 10-6-06

Moving from I&T to ISOC

- Now (I&T operating the instrument)
 - Use LICOS to command the instrument and display telemetry
 - Command and command verification done internally by LICOS
 - FSW code modules tracked using integrated LICOS/FMX
 - NOTE: New configurations are often generated by I&T or other subsystem (not necessarily FSW). These configurations are not tracked by MOOT/MOOD yet nor by FMX. Consequently they are uploaded only when they are needed to RAM not TFFS
- ISOC
 - Use ITOS to command the instrument
 - Use LICOS to display telemetry
 - Track commands issued/verified in activities database
 - Track all files and all configurations using FMX and MOOT/MOOD
 - Develop tools to integrate all of these elements
- FSW provided software and databases already exist
 - On-board FSW
 - FMX
- There are significant interactions among the LAT Configuration, Mission Planning, and L0 Processing components within the ISOC

LAT Configuration Interactions

12

Summary

- B0-6-12 is on the LAT
 - Regression testing is continuing
 - One bug found that necessitates new build, B0-6-13
- B0-6-13 is built
 - FSW regression testing in progress
 - Installation planned for 9-28-06 PM
- B0-7-0 includes compression
 - All encoding (compression) is done
 - Decompression is about 90% done
 - Rigorous testing of compression/decompression required prior to release of build

GLAST Monthly FSW

FSW B1.0.0

- Build 1.0.0
 - Includes GRB algorithm
 - 5.3.10.2.1 GRB Location Accuracy
 - 5.3.10.2.2 Modification of GRB criteria
 - 5.3.11.3.3 Process Attitude Data
 - 5.3.11.6 GRB Alert Message Latency
 - 5.3.11.7 LAT GRB Repoint Request Message to SC
 - Includes FSW Standards
 - 5.4.1 System of Units (metric system)
 - 5.4.2.x Coordinate Systems (3 requirements)
 - 5.4.3 Resource Margin
- Available around 11/6/06
- Delta-FQT-B (11/28/06)
 - Complete 183 of 183 requirements
- Install on LAT prior to Observatory Environmental Test

JIRA Metrics

JIRA Metrics as of 22 August 2006

GLAST Monthly FSW

Top FSW JIRAs (Critical or Major Severity)

Priority	Key	Summary	Issue Type
Critical	FSW-716	Implement science data compression	Improvement
Critical	<u>FSW-292</u>	Implement GRB detection algorithm	New Feature
Major	<u>FSW-684</u>	There need to be general no-op commands for each task.	New Feature
Major	<u>FSW-680</u>	Swap LHKPnxHP3DSIT and LHKPnxHP5DSIT to address miswiring of thermal sensor	Bug
Major	<u>FSW-718</u>	Expose LookAtMe in telecommands	Improvement
Major	<u>FSW-717</u>	Expose LAT reset command to Telecommand	Improvement
Major	<u>FSW-456</u>	EMP and LCM do zlib compress with malloc/free, should use MBA_alloc/free	Improvement
Major	<u>FSW-305</u>	Summary/statistics telemetry stream needs to be created for on-board event processors	Improvement
Major	<u>FSW-369</u>	MSG needs to disable reports from within the MSG task	Bug
Major	FSW-576	Bug in CAL data compression algorithm	Bug
Major	<u>FSW-623</u>	CLONE -Documentation for several apids needs to be added to standard webpage	Improvement

28 September 2006

Top FSW JIRAs (Critical or Major Severity)

Priority	Кеу	Summary	Issue Type
Major	<u>FSW-703</u>	Ensure all registers are set	Improvement
Major	<u>FSW-704</u>	Read, report and clear flag registers	Improvement
Major	<u>FSW-701</u>	Add flexibility to MSG level output based on destination	Improvement
Major	FSW-699	Create report to identify configuration files in use	Improvement
Major	FSW-698	Separate LTC master config files into fof, data	Improvement
Major	<u>FSW-270</u>	mnemonics in telemetry packet 720/0x2D0 do not begin with ?L?	Improvement
Major	<u>FSW-562</u>	Make sure that PIG's power sequence is still correct	Improvement

B0.6.12 JIRAs

- Existing JIRA items address requirements, bug fixes, and open NCRs:
 - FSW-164, 167, 270, 419, 526, 538, 562, 636, 690-2, 695-7, 703-4, 716-8
 - Example: Data compression, LAT reset
- Correct deficiencies in current functionality
 - FSW 287, 369, 582, 682, 698-9, 707
 - Example: Anti-flooding for MSG, LTC Configuration files traceable with FMX, MOOT/MOOD
- Needed for operations visibility
 - **FSW-684**, 693
 - Example: No-op commands, command confirmation and task messaging configuration report

FSW role in LAT Configuration

- Mission Planning requires:
 - Knowing current LAT configuration
 - Knowing the proposed LAT configurations
 - Understanding the effect of recent commanding activities on LAT configuration
- LAT flight software must be able to:
 - Configure the instrument and alter its data-taking configuration in different observation modes
- LAT Operations Plan links mission planning to LAT on-board operations
- Creating a new configuration:
 - FSW provides the mechanism for creating binaries
 - PVO/SAS/LAT collaboration provide the inputs (the data)
- Tools on the ground track history of LAT configuration

- File Management eXtra (FMX) database tracks every file uploaded to LAT (and any teststand in ISOC dataflow lab)
- FMX relates an uploadable binary file to a unique file identifier
 - Tracks FSW code modules and configuration files on LAT
 - Integrates with higher-level configuration management tools (MOOT/MOOD)
 - Tracks onboard file system history for life of mission
- FMX understands the same file operations that the onboard FSW understands:
 - FILE upload
 - FILE commit
 - FILE delete
 - EEPROM format

MOOT/MOOD

- MOOD (Mode of Operations Database) is the repository for LAT configuration parameters. It
 - Tracks LAT configuration parameters using descriptive terms: thresholds, channel masks, delays...
 - Can reconstruct any uploaded configuration, present or historical
 - Can avoid creating and uploading redundant information
 - Interfaces with FMX to log the binary representation of these configurations
 - Interfaces to SAS tools for data analysis
- MOOT (Modes of Operation Tracker)
 - populates MOOD
 - drives the infrastructure of FSW utilities used to build binary files

MOOT/MOOD (cont'd)

- MOOT/MOOD defines and creates configuration files for:
 - LAT register settings (LATC)
 - Definition and execution of calibration runs (LCI)
 - Thermal Control
 - pedestals and gains, parameters for each detector component
 - Returns these values to SAS during reconstruction
 - Transmits values in a specified format to FSW
- MOOT does not deal with FSW code modules

MOOT creates a new file

MOOT: Calibration to configuration

How a file becomes a LAT Configuration

