
GLAST CHEP 03 March 24-28 2003

J. Bogart 1/26

GammaGamma--ray Large ray Large
Area Space Area Space
TelescopeTelescope

Calibration Infrastructure for the
GLAST LAT

Joanne Bogart
Stanford Linear Accelerator Center
jrb@slac.stanford.edu

http://www-glast.slac.stanford.edu/software

GLAST CHEP 03 March 24-28 2003

J. Bogart 2/26

ContentsContents

• Introduction and definitions
• Requirements
• Data and metadata
• System overview
• Non-Gaudi application support
• Gaudi application support (generic, examples)
• Wrap-up

GLAST CHEP 03 March 24-28 2003

J. Bogart 3/26

GLAST MissionGLAST Mission

GLAST measures the direction, energy and arrival
time of celestial gamma rays

-LAT measures gamma-rays in the energy range ~20
MeV - >300 GeV

- There is no telescope now covering this range!!

- GBM provides correlative observations of transient
events in the energy range ~20 keV – 20 MeV

Launch: September 2006
Florida

Orbit: 550 km,
28.5o inclination

Lifetime: 5 years
(minimum)

GLAST CHEP 03 March 24-28 2003

J. Bogart 4/26

GLAST Instrument: Large Area Telescope (LAT)GLAST Instrument: Large Area Telescope (LAT)

DAQ
Electronics

Grid

Tracker

Calorimeter

ACD Thermal
Blanket

• Array of 16 identical
“Tower” Modules, each
with a tracker (Si strips)
and a calorimeter (CsI
with PIN diode readout)
and DAQ module.

• Surrounded by finely
segmented Anti-
Coincidence Detector
(plastic scintillator with
PMT readout).

GLAST CHEP 03 March 24-28 2003

J. Bogart 5/26

What do we mean by "calibration" ?What do we mean by "calibration" ?

Roughly speaking, we mean information about the detector
which can vary with time and is required to interpret the raw
readout. The boundaries are still fuzzy, but will include at a
minimum

Hardware status (hot, dead, etc.) for components of the three
subdetectors: calorimeter, tracker, and ACD.

Tracker alignment constants

Parameters needed to convert from electronic readout to
physical units (thresholds, gains, position-dependent light
attenuation in calorimeter crystals, ...)

and will not include description of the ideal detector geometry,
which is managed by a separate facility.

GLAST CHEP 03 March 24-28 2003

J. Bogart 6/26

Infrastructure RequirementsInfrastructure Requirements

• Accommodate variety of data types, as in previous slide
• Handle data for prototypes as well as flight instrument

– Prototypes have the same components, but in different numbers
(including zero)

• Support, to varying degrees
– clients adding new datasets (coach)
– clients wishing to track hardware performance (coach)
– [Gaudi] event reconstruction and analysis clients (1st class)

• For event analysis,
– require transparent update as event data timestamp leaves validity

interval of in-memory constants
– support access to multiple “flavors” of a single data type concurrently

• Support at least XML and ROOT persistent forms
• Portability for readers: full capability for anyone with network access;

limited support for development on desert islands.

GLAST CHEP 03 March 24-28 2003

J. Bogart 7/26

Infrastructure NonInfrastructure Non--requirementsrequirements
• Don't need to provide easy access to subset of a particular calibration

data set.
– Simplifies TDS structure and conversion process

• Although must handle prototype instruments as well as flight
instrument, may assume that any single analysis job only cares about
one instrument.

• Conversion in the Gaudi* sense from in-memory form to persistent
form is not required (though Gaudi applications may generate
persistent calibration data sets other ways).
– Conversion from persistent form must happen transparently during

event analysis. Conversion to persistent form is the result of an explicit
request.

*Software framework designed for HEP or HEP-like event analysis. Some familiarity
is assumed for this talk.

GLAST CHEP 03 March 24-28 2003

J. Bogart 8/26

Data and MetadataData and Metadata

• The ability to look things up looms large in this system. To
expedite this, we distinguish the bulk data from the metadata.

• Bulk data is what typical applications care about: which strips
are dead, what is the gain of each calorimeter channel, etc.

• Metadata is information about a particular calibration bulk data
set. It comes in several categories:

– selection information used to determine which is the desired
dataset, such as calibration type, instrument, validity interval

– conversion information used to find and read in the bulk data
such as file spec and physical format type

– miscellany: other information primarily for browsing or for
creating summaries for human readers, such as description of
conditions when calibration was done.

GLAST CHEP 03 March 24-28 2003

J. Bogart 9/26

Most Metadata FieldsMost Metadata Fields

String for anything elseComment field
String describing input to the calibration procedureInput description
XML or ROOTData format
Completion status: OK, aborted, ...Calibration status
Production, development, test, superseded..Procedure level
One LAT (flight), CU, EM, ... (prototypes)Instrument
When procedure generating data completedCompletion time
dittoValidity end time
Compare to event timeValidity start time
Where to find the data; e.g., file spec.Data identifier
for schema evolution (someday)Data format version
automatically assigned; uniqueSerial number
vanilla, ideal, digi, ...Flavor
TKR alignment, CAL gainsCalibration type

GLAST CHEP 03 March 24-28 2003

J. Bogart 10/26

Searching the MetadataSearching the Metadata

Typically want to find the “right” calibration for a particular event and a
particular kind of analysis...

/** Return serial number for calibration which is best match
to criteria. */

Metadata::eRet calibUtil::Metadata::findBest

(unsigned int * ser, // serial # (output)

const std::string& calibType,

const facilities::Timestamp& ts,// validity interval must

// include it

unsigned int levelMask, // acceptable proc. level

const std::string& instrument, // e.g. LAT, EM, CU, ...

const std::string& flavor = "VANILLA"

)

GLAST CHEP 03 March 24-28 2003

J. Bogart 11/26

Using the MetadataUsing the Metadata

...and read it in.

/** Given a calibration serial number, return information needed

for caller to read in the data.

Returns : true if serialNo exists in dbs and "filename" has

non-null value; else false.

*/

Metadata::eRet calibUtil::Metadata::getReadInfo

(unsigned int serialNo, // input

eDataFmt & dataFmt, // XML or ROOT

std::string & fmtVersion,

std::string & dataIdent) // Typically, file spec.

findBest and getReadInfo can be viewed as implementing an abstract
interface for metadata, independent of the underlying MySQL
implementation.

GLAST CHEP 03 March 24-28 2003

J. Bogart 12/26

InfrastructureInfrastructure Diagram (Diagram (simplifiedsimplified))

calibUtil interface
Write/register

Search
Read

I & T Client Gaudi Client
Calibrator

Metadata (persistent)

MySQL rdbms

Data (persistent)

bad strips
(XML)

CAL calibs
(ROOT)

ROOT, XML
services

GLAST CHEP 03 March 24-28 2003

J. Bogart 13/26

How to Add a Calibration DatasetHow to Add a Calibration Dataset

• Generate the bulk data. This is entirely independent of
Calibration Infrastructure except for help in some cases in
writing it out in the proper form.

• Store the resulting information in an appropriate place.

• Make an entry in the production MySQL dbs pointing to it and
including validity interval. calibUtil provides support for this

– Access to MySQL is automatic for clients of calibUtil, but
controlled.

– Also possible to write a row to MySQL table directly, but without
benefit of any sanity check.

GLAST CHEP 03 March 24-28 2003

J. Bogart 14/26

How to Track Hardware Status (NYI)How to Track Hardware Status (NYI)

• When a new calibration of an interesting type has been entered
into the system, run a job which
– Reads the entire new bulk data set
– Outputs to a separate hardware dbs, organized by channel

rather than by calibration procedure instance

• Initially do this manually; later it could be triggered
automatically.

• The hardware database will have its own set of services,
probably including histogramming relevant quantities, report
generation,… all of which are outside the scope of “Calibration
Infrastructure” as used here.

GLAST CHEP 03 March 24-28 2003

J. Bogart 15/26

GaudiGaudi and Calibrationand Calibration

• As for any TDS (Transient Data Store) object, may associate
converter/conversion service with calibration data.

• Gaudi has built-in support for calibration/conditions data: data whose
validity is a function of time.
– IValidity abstract interface for data classes
– IDetDataSvc interface for data services* needing to check validity

• However, Gaudi-provided implementation DetDataSvc was unsuitable
(initialize() makes some rather specific assumptions) so wrote a
variant CalibDataSvc class.

• CalibBase class inherits from IValidity, DataObject. Also keeps track
of serial number.

• Since a (conceptually) single calibration dataset comes in two
physical pieces which may be in different formats, the conversion
process is most naturally implemented in two stages*: metadata
“conversion” and bulk data conversion.

* Data service: something responsible for providing access to data in a TDS.
* See Acknowledgements.

GLAST CHEP 03 March 24-28 2003

J. Bogart 16/26

Transient (Calibration) Data Store [TTransient (Calibration) Data Store [T(C)(C)DS]DS]

• Datatypes are “simple” in the sense that anyone wanting
calibration data gets the whole dataset. There is no hierarchy
of data in the TCDS; all the actual data is in the leaf nodes.

• Early on we realized different applications might want different
flavors of the same calibration type, covering the same time
interval. Might even want more than one flavor available
concurrently to different parts of the same job.

GLAST CHEP 03 March 24-28 2003

J. Bogart 17/26

FlavorsFlavors**

• Potential uses
– Handy way to dispense with calibration altogether; use an

“ideal” detector, all of whose (flavor = ideal) calibrations are
perfect and valid for all time.

– Can have one set of bad channels at digi step, a different set at
recon (which is in fact what happens with real rather than MC
data)

– Can simulate failure modes

• How dynamic is it?
– Code can discover flavors at initialization time; but specifying

them (in job options) is a bit clumsy.
– It's probably adequate for our needs.

* See Acknowledgements.

GLAST CHEP 03 March 24-28 2003

J. Bogart 18/26

TCDS Structure TCDS Structure

Calib

TKR_HotChan

ACD_EffCAL_LightAtt

vanilla
digi

vanilla
vanilla

/Calib/TKR_HotChan/digi

/Calib/ACD_Eff/vanilla/Calib/TKR_HotChan/vanilla /Calib/CAL_LightAtt/vanilla

Part of TCDS node hierarchy. Only the leaf nodes have calibration data associated with them.

GLAST CHEP 03 March 24-28 2003

J. Bogart 19/26

Create a Calibration ObjectCreate a Calibration Object
m_calibDataSvc->retrieveobject("/Calib/ACD_Eff/vanilla",pObj)

client Ask TCDS data service for pointer to object

pLoader->createObject(pAddress ,pObj)
CalibDataSvc

(DataSvc)
If object not already in TCDS, ask loader (Persistency service) to load it.
So-called address is a descriptor including enough information to guide
conversion

pSvc->createObject(pAddress ,pObj)PersistencySvc
Ask format-specific conversion service (MySQL) to create object

m_meta->findBest(&ser, calibType, eventTime, ...);
m_meta->getReadInfo(ser, &physFmt, &version, &ident);
m_persSvc->createObj(tmpAddress, pObj);

CalibMySQLCnvSvc

Search meta dbs for best match; get info needed to retrieve calib bulk data,
ask Persistency Svc to create corresponding obj.

GLAST CHEP 03 March 24-28 2003

J. Bogart 20/26

Create a Calibration Object (cont’d)Create a Calibration Object (cont’d)

pSvc->createObject(pAddress ,pObj)
PersistencySvc

Ask format-specific conversion service (XML, later also ROOT) to create
object

CalibXMLCnvSvc
(ConversionSvc)

pCnv->createObject(pAddress ,pObj)

Find the right converter for this data type, this physical format, and ask it
to create the object

XmlBaseCnv fills info common to all calib data (validity interval,
metadata serial number), parses XML file and passes DOM_Document
node to specific converter, which fills in remainder of data.

XmlTest1Cnv :
XmlBaseCnv

GLAST CHEP 03 March 24-28 2003

J. Bogart 21/26

Still Valid?

A typical client algorithm for calibration data has to make at least
two calls to the Calibration Data Service to insure that a dataset
appropriate for the current event time will be in the Calibration
TDS:

• The first to get a pointer to the data in the TDS (and create it from its
persistent form if it's not already there). This is what was portrayed in
the previous slides.

• The second to verify that data already present in the TCDS is still
applicable to current event (and if not update it with a new data set
which is). The details are similarly convoluted, but mercifully omitted.

GLAST CHEP 03 March 24-28 2003

J. Bogart 22/26

TKR Bad Strips TKR Bad Strips ArchitectureArchitecture**

XML
files

Metadata
rdbms Calibration

conversion
services,

converters

TCDS:
hot strips,

dead strips
Persistent data is kept in XML files. Each file is
described with metadata. Metadata cnv service
searches for the ‘right’ dataset. Format-specific
cnv service invokes converter to create or
update TCDS information.

Once per event Tkr svc asks for update. If data
has been refreshed (check serial # to see), it will
then recreate its own merged representation.

Tkr svc makes data available to algorithms.

algorithmdata
Tkr Service:
merged bad
strips

control algorithm

* See Acknowledgements.

GLAST CHEP 03 March 24-28 2003

J. Bogart 23/26

CAL perCAL per--range datarange data

• Unlike TKR bad strips, there are several CAL calibration types for
which every data set (for a given instrument) is of the same size, and
all such calibration types have the same organization: there is some
fixed amount of data per channel.

• Design nearly-uniform XML (later will be ROOT) description for all
such calib types.

• Design helper class CalFinder which knows how to find the right
dataset for a particular range.

• End up with parallel class hierarchies, one for per-range data and one
for full data set. Template implementation also considered.

GLAST CHEP 03 March 24-28 2003

J. Bogart 24/26

StatusStatus

• MySQL database exists in a usable form, perhaps even final
form. Future changes, if any, will not be sweeping.

• MySQL and XML conversion services exist in final form or
something close to it.

• ROOT conversion service is on its way.

• Have several working examples of calibration data types:
– TKR hot and dead strips
– CAL pedestals and gains
– Simple test data type

• For each, have
– Persistent representation (all XML for now)
– Corresponding TCDS class
– Converter taking the former to the latter

GLAST CHEP 03 March 24-28 2003

J. Bogart 25/26

ConclusionsConclusions

So far, the system is living up to expectations. The design effort was long
and difficult; implementation and debugging haven’t been bad. However,
there is plenty left to do:

• Get ROOT conversion service going (preferably one which will handle event
data as well as calibration data)

• Add a bunch more calibration data types
• Finalize location for persistent form of production calibration data sets.
• Implement scheme for getting event time from the event (event has to contain

a sensible event time field first!)
• Design and implement tools for maintaining metadata, in particular for

updating validity intervals and checking their properties.
• Design and implement alternative to MySQL conversion service for isolated

users
• Design and implement mirror strategy
• Enhance infrastructure or clone it to handle program parameters.

GLAST CHEP 03 March 24-28 2003

J. Bogart 26/26

AcknowledgementsAcknowledgements

Many thanks to...

• Andrea Valassi, CERN, for help with the two-stage conversion
including
– pointing me to his somewhat similar implementation
– answering my questions
– (not least!) encouraging me to follow this route, which seemed rather

daunting at first

• Leon Rochester, SLAC (GLAST), for contributing the concept
of “flavor” and for helping with design and implementation of
bad strips architecture.

• Just about everyone else in the GLAST LAT Software group,
one way or another.

	Contents
	GLAST Mission
	GLAST Instrument: Large Area Telescope (LAT)
	What do we mean by "calibration" ?
	Infrastructure Requirements
	Infrastructure Non-requirements
	Data and Metadata
	Most Metadata Fields
	Searching the Metadata
	Using the Metadata
	Infrastructure Diagram (simplified)
	How to Add a Calibration Dataset
	How to Track Hardware Status (NYI)
	Gaudi and Calibration
	Transient (Calibration) Data Store [T(C)DS]
	Flavors*
	TCDS Structure
	Create a Calibration Object
	Create a Calibration Object (cont’d)
	Still Valid?
	TKR Bad Strips Architecture*
	CAL per-range data
	Status
	Conclusions
	Acknowledgements

