
 Page 1 of 13

Document # Date

LAT-TD-xxxxx-
xx

January 23, 2002

Author(s) Supersedes

System or Sponsoring Office LAT TECHNICAL NOTE
Science Analysis Software

Document Title

 SAS Recommendations for Documentation

CHANGE HISTORY LOG..1
1. ABSTRACT ..2
2. DEFINITIONS ..2
3. INTRODUCTION...2
4. WEB PAGE ORGANIZATION ...2
5. REQUIREMENTS AND DESIGN DOCUMENTS ..3
6. CODE DOCUMENTATION ..4

6.1 Introduction ..4
6.1.1 Doxygen ..4
6.1.2 Standard C++ Comments...4

6.2 Code Documentation Components ..5
6.2.1 Mainpage ...5
6.2.2 Inline documentation of header files ...6
6.2.3 Inline documentation of implementation files ..9
6.2.4 Release Notes ...10
6.2.5 Log Messages and ChangeLog..11
6.2.6 Doxygen Document Extraction ...11
6.2.7 Updating Documentation..11

7. DEVELOPER GUIDE ..11
8. USER GUIDE ...12
9. COOKBOOK ...12
10. TUTORIALS...12
11. SUMMARY OF RECOMMENDATIONS...12
12. REFERENCES..13

CHANGE HISTORY LOG
Revision Effective

Date
Description of Changes

0.4 Jan. 23, 2002 HMK: Re-ordered the subsections in the code

documentations section.
Inserted location for storing images within a package. Fixed
up the examples to be more consistent.

0.3 Jan. 18, 2002 HMK: Separated into 4 documents - one master and 3
subdocuments. Modified code recomendations: Inserted
example implementation comment block and inserted new
section concerning the ChangeLog.

0.2 Jan. 17, 2002 MSS: Modified Code Documentation Introduction to
include goals of and guidelines for code documentation.

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision. Form # LAT-TD-00006-01

LAT-TD-xxxxx-xx Page 2 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

0.1 Jan. 15, 2002 HMK: Inserted new section on Requirement and Design
Documents. Converted examples to use JavaDoc style
Doxygen comments.

0.0 Jan. 9, 2002 initial version

1. ABSTRACT

 This note gives recommendations for GLAST SAS documentation, the expected content,
the access to documentation and the tools to be used to produce the documentation.
2. DEFINITIONS

SAS – Science Analysis Software
TBD – To Be Determined
3. INTRODUCTION

Types of documentation
We envisage different types of SAS documentation:

�� web pages documenting the total SAS effort;
�� requirements and design documents together with justification of choices made;

made available before writing the code;
�� inline documentation of declaration and implementation files;
�� user guides, which explain how to set up the environment, describe the basic

functionality and use of the software;
�� developer guides, which explain technical details;
�� cookbooks, which list instructions for common data analysis tasks;
�� tutorials provided to help new users to learn how to use common tools.

The limits between these different types of documentation are not sharp. Obviously there
may be some overlap.

4. WEB PAGE ORGANIZATION

It is very useful to build up documentation as the work progresses. The easiest way to
make information accessible to others is via the web. While developing web pages, it is
important to consider the organization and presentation style used.

Web pages should be accessible on all of our supported systems: Windows, Linux, and
Solaris. In addition, web pages should be viewable by users of both Netscape (versions
TBD) and Microsoft Internet Explorer (versions TBD). Typically this implies that all
pages are in HTML or PDF, however, other formats are allowed.

LAT-TD-xxxxx-xx Page 3 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

The primary web for the SAS is located at http://www-glast.slac.stanford.edu/software.
While auxilary web pages may be maintained on other websites, it is recommended that
the underlying SAS web page structure be maintained on the SLAC software web.

[TBD by the Documentation Task Force: Here it would be useful to illustrate a
recommended organization for the SAS web. Perhaps consider standard web page
templates for common types of GLAST SAS web pages. At the very least, guidelines for
creating and linking pages would be useful.]

5. REQUIREMENTS AND DESIGN DOCUMENTS

[TBD by the Documentation Task Force]

LAT-TD-xxxxx-xx Page 4 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

6. CODE DOCUMENTATION

6.1 Introduction

This section gives recommendations for inline documentation and introduces the tool
Doxygen, which we have chosen for extraction of documentation from the code. Code
documentation will take two forms: That used within Doxygen, which will be primarily
for the benefit of code users; and that using standard C++ comment lines, which will be
for the benefit of code maintenance and development.

6.1.1 Doxygen

The goals of the Doxygen based comments include:

�� Supplying an automatically extractable summary of all classes and modules.
�� Creating an encyclopedic users reference in easily viewed formats.
�� Allowing developers and maintainers an overall view of the software systems.

In order to accomplish these goals, Doxygen has the following capabilities:

�� Doxygen can generate online HTML documentation and/or an offline reference
manual in LaTeX (convertible into hyperlinked PDF) from a set of documented
source files.

�� The documentation is extracted directly from the sources, which makes it much
easier to keep the documentation consistent with the source code.

�� Doxygen can be configured to extract the code structure from (undocumented)
source files. The relations between the various classes are visualized by means of
include dependency graphs, inheritance diagrams, and collaboration diagrams,
which are all generated automatically.

Doxygen is a freely available tool (GNU General Public License). It is available on most
UNIX flavors and Windows. GLAST SAS will note which version of Doxygen is the
current GLAST standard.

6.1.2 Standard C++ Comments

C++ comment documentation should accomplish the following goals:

�� Allow maintenance of code by people not involved in its development.
�� Allow understanding of requirements, inputs and outputs, algorithms, and

software design techniques, when reviewing code.
�� Allow understanding of code structure for purposes of reusability i.e. make

explicit all data structures and external code required to reuse a particular class,
method, etc.

LAT-TD-xxxxx-xx Page 5 of 13

Code authors and code reviewers should keep these goals in mind explicitly while writing
and reviewing GLAST software systems. Coders should always be asking themselves:

�� “How will a future user or maintainer deal with this software after I am sleeping
with the metaphorical fish?”

�� “Have I done anything that, to me, seems clever and elegant, but to a follow-on
coder will seem mostly obscure?”

�� “Have I implemented an algorithm with no reference to its origins or just what it
actually does?”

�� “Have I so welded my code into the system framework that it is impossible to
extricate with the information at hand?”

Code documentation can solve all these potential problems and more, both for users and
developers.

6.2 Code Documentation Components

6.2.1 Mainpage

Doxygen document extraction will produce a series of HTML pages, including an index
page. The content of the index page is determined by a file which is called mainpage.h.
This mainpage.h file is required for all packages and should reside in the package src
directory. Note that class names, which appear in the file mainpage.h will be hyperlinked
to the corresponding class description. The file mainpage.h is therefore a perfect place to
provide an overview of the functionality of the package. A meaningful mainpage.h
should be part of every new package import. For packages whose documentation is in
need of an upgrade, tackle mainpage.h first. It has the form shown in Listing 1. It is Glast
convention to add to the package description the package's requirements, which show the
dependencies on other packages. It is also useful to keep a list of "todo" items on this
page.

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

// Mainpage for doxygen
/** @mainpage package template
 *
 * @section intro Introduction
 * Include here an overview of the package: outline its main structure, the principal services it provides and comment
* on dependencies.
* If you desire to insert a link to a web page do
* Standards
* @section onemore One more section
*
* @authors [optional]
* <hr>
* @section requirements CMT Requirements
* @include cmt/requirements
* <hr>
* @section notes Release notes for current release
* release.notes
* <hr>
* @todo [optionally include text about more work to be done]
* @todo Give each todo item its own line
*/

Listing 1 Example mainpage.h file

LAT-TD-xxxxx-xx Page 6 of 13

6.2.2 Inline documentation of header files

It is recommended that all Doxygen style comments reside within the header files, with
the class declarations. The only exception occurs when declarations appear in the
implementation file. The text to be extracted has to be enclosed by Doxygen style
comments. Two formats are supported:

�� JavaDoc style, where comment blocks look like
/**
* Comment text
*/
and the one line version
/// text

�� Qt style, where comment blocks look like
/*!
 Comment text
*/
and the one line version
//! text

Other documentation not meant for Doxygen processing should use the standard C++
comments '/* .. */' or '//'. In general, implementation files (*.cxx) should contain only
standard C++ comments.

D
fu
n
d
se
d

In
d
ra

A
It
c
c
C
a

/** this is a comment to be included in the extracted documentation */

// this comment will not be extracted by Doxygen
Hard copies of this document are for REFERENCE ONLY and should not be
considered the latest revision beyond the date of printing. Form # GF-00001-A

oxygen style comments should be written before the class declaration, the member
nction declaration, or data member declaration whenever the function of these items is

ot immediately obvious from their declarations. It is mandatory that all class
eclarations be immediately preceded by a Doxygen style comment block. The first
ntence of a comment block will be used for short overviews. The complete text is

isplayed in the long description of the class or member.

 order to maximize the amount of useful information visible per unit area of a
ocumentation page, we recommend setting off comment blocks using white space,
ther than divider lines.

gain, in order to conserve screen space, do not document obvious methods or members.
 is not instructive to document a default constructor with a comment such as "default
onstructor". Similarly, get and set routines do not require comments and in fact a
omment in this case only serves to make the declarations more difficult to read.
omments should be inserted when the developer feels there is something that requires
n explanation, that will make the code more understandable.

LAT-TD-xxxxx-xx Page 7 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

Doxygen understands keywords and selected HTML commands. Listing 2 shows the
most useful ones. Detailed information concerning Doxygen usage is available in the
Doxygen user manual available from the Doxygen web site http://www.doxygen.org.
Please note that the comments bracketed by [..] are present to provide additional
information, and are not intended to appear in an actual header file. The example follows
the GLAST SAS coding rules described in http://www-
glast.slac.stanford.edu/software/CodeHowTo/codeStandards.html
It is suggested to keep the documentation within the code as simple as possible. If one
wishes to insert an image in the Doxygen documentation, this can be accomplished using
a command of the form:
@image <format> <file> ["caption"]
where <format> may be html or latex. All images will be stored in the package's
doc/images directory.

The example header in Listing 2 is organized into four sections:

�� Headers which are needed for the class declaration and the forward declaration of
classes.

�� The class description is required. Note the use of the keyword @author. The
version is automatically provided by CVS through the RCS keyword $Header$.

�� Examples of methods. The methods should be declared in the order of increasing
restriction of access: public => protected => private. For large classes repeat the
access specifiers for groups of member declarations to improve readability. Note
the use of @param and @return keywords, which describe the function arguments
and return type.

�� Private members and member functions

http://www.doxygen.org/

LAT-TD-xxxxx-xx Page 8 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

Listing 2 Example header file displaying comments and sequence of statements

/**
 * @class ClassTemplate
 *
 * @brief This is an example class.
 *
 * This comment block is @e required for all classes.
 * If you desire to provide a link to a web page do
 * <A HREF="http://www-glast.slac.stanford.edu/software" GLAST Home Page
 *
 * @author Some Body
 *
 * $Header$
 */

class ClassTemplate {

public:

 ClassTemplate();

 ~ClassTemplate();

 int getIntMember() { return m_intMember; };
 void setIntMember(const int i) { m_intMember = i; };

 /**
 * Provide detailed desciption of this function
 * @param parmeter1 Describe this parameter
 */
 void publicMemberFunction(int parameter1);

 /**
 * Provide a detailed description of this function.
 * @return Describe the possible return values.
 */
 bool anotherPublcMemberFunction();

 static int getStaticIntMember() { return m_staticIntMember; };

private:

 /// Provide a description of this class member [note that the m_ prefix is not used for static members]
 static int s_staticIntMember;
 /// Provide a description of this class member
 int m_intMember;
 /// Provide a description of this class member
 float m_floatMember;

}

#endif // CLASSTEMPLATE_H

LAT-TD-xxxxx-xx Page 9 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

6.2.3 Inline documentation of implementation files

As mentioned in the preceding section, comments will not generally be extracted from
implementation files. It is, however, desirable to provide standard C++ comments to
explain the details of the implementation. In general, '//' comments are preferred over '/*
.. */' comments since '/* .. */' blocks cannot be nested. Each implementation file should
begin with a standard comment block containing the file identifier and a short
description, an example is provided in Listing 3. Please note that comments bracketed by
[..] are present for informational purposes and should not appear in actual implementation
files.

Listing 3 Example source file containing standard comments and sequence of statements

// File and Version Information:
// $Header$
//
// Description:
// ClassTemplate provides an example of code documentation for a class. These comments
// will not be processed by Doxygen - but are here for Developers to identify this source
// file.
//
// Author(s):
// Author1
// Author2

// [Header files]
#include "PackageName/ClassTemplate.h"

// [Declare static members]
int ClassTemplate::m_staticIntMember;

 // [PUBLIC MEMBER FUNCTION DEFINITIONS]

// [Constructors]
ClassTemplate::ClassTemplate() {
}

// [Destructors]
ClassTemplate::~ClassTemplate() {
}

void ClassTemplate::publicMemberFunction(int parameter1) {
 // Purpose and Method: [include the physics if appropriate]
 // Inputs
 // Outputs
 // Dependencies:
 //
 // Restrictions and Caveats: e.g. "This doesn't work off-axis"

 // [Code inside function should be documented using standard C++ comments]
}

 // [STATIC MEMBER FUNCTION DEFINITIONS]

 // [PRIVATE MEMBER FUNCTION DEFINITIONS]

LAT-TD-xxxxx-xx Page 10 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

Listing 3 displays the use of a standard C++ comment within the implementation file.
Each implementation file begins with a header block. Then within each important
member function, a comment block should appear of the form:
 // Purpose and Method: [include the physics if appropriate]
 // Inputs
 // Outputs
 // Dependencies:
 //
 // Restrictions and Caveats: e.g. "This doesn't work off-axis"

Such comments will provide developers and future code maintainers the information they
need to understand the code. Additional C++ comments should be inserted as well to
point out interesting features of the routine. Please note, that for simple member
functions, one may just provide a purpose. If the function is small (i.e. one line) and the
purpose is clear - then no comment block is required.

6.2.4 Release Notes

Release notes are maintained for each package, in a text file called "release.notes". This
file is located within the package's doc directory. This file should be updated when
noteworthy modifications are made to a package and when new tags are created. Listing
4 provides a release.notes example from the templages package. Note that the
release.notes are embedded within a Doxygen style comment block. This allows for easy
reference to the release notes from the mainpage.h file.

Listing 4 Example release.notes file
 /** @file release.notes
 * Package templates
 * Coordinator: GLAST Documentation Task Force
 *
 * 17-jan-2002: HMK - update to use JavaDoc style \n
 * 11-dec-2001: HMK - tag v0 - initial import \n
 */

LAT-TD-xxxxx-xx Page 11 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

6.2.5 Log Messages and ChangeLog

When performing a CVS check-in, CVS requires a log message. This log message is to
contain details pertaining to the modifications made. The contents of these messages are
automatically logged to a file named ChangeLog, stored at the top-level of a package.

The ChangeLog will be used as our modifcation history. It is imperative that the
information stored in the ChangeLog is detailed enough to provide useful information for
future developers and maintainers of the package. Those performing code check-ins
should provide meaningful log statements. One may further modify the ChangeLog file
and check it back into the CVS repository, just as any other file within a package. This
allows the developer to consolidate or further annotate the comments.

6.2.6 Doxygen Document Extraction

A standard configuration file, Doxyfile, may be used to set the parameters in use when
performing document extraction using Doxygen. The standard GLAST Doxyfile is
stored in the GlastPolicy package. This Doxyfile will be used for all SAS Doxygen
extraction. Developers who desire to modify the Doxygen configuration, may provide a
Doxyfile in the package's doc directory. However, this should only be done when there is
good reason to do so. When a local Doxyfile exists in the package, its contents are
appended to the standard Doxyfile.

The standard directory for running Doxygen will be the package's doc directory. This is
important as the Doxyfile may specify some paths that are relative to the directory where
Doxygen is running.

The official production of Doxygen pages will be performed in some TBD time interval.
The Doxygen output will be made web-accessible. LaTeX will be available for official
Doxygen processing, allowing images to be imported and mathematical formulae to be
properly processed.

[The hows and whens of Doxygen document extraction should be inserted here - is this
done automatically for all tagged checkout packages? What about individual packages?]

6.2.7 Updating Documentation

The importance of comments cannot be overemphasized. Yet there is only one thing
worse than undocumented code: misleadingly documented code. Often such out-of-sync
comments render software components unusable. Whenever you modify your code,
remember to update the comments appropriately or removed them altogether. You should
also be aware that when you comment out a piece of code, but leave the comments, the
Doxygen short comment will be associated to the wrong piece of code.

7. DEVELOPER GUIDE

LAT-TD-xxxxx-xx Page 12 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

[Details TBD by the Documentation Task Force]

8. USER GUIDE

[Details TBD by the Documentation Task Force]

9. COOKBOOK

[TBD by the Documentation Task Force]

10. TUTORIALS

[Details TBD by the Documentation Task Force]

11. SUMMARY OF RECOMMENDATIONS

Web Page Organization

�� All web pages should be viewable on all supported systems: Windows, Linux,
and Solaris. Additionally pages should be accessible using reasonably recent
versions of Microsoft Internet Explorer and Netscape.

Code Documentation

�� Maintain a mainpage.h file in the package's src directory. This file contains a
general description of the package and is used as the index page for Doxygen
output.

�� All class declarations must be preceded by a Doxygen style comment block
describing the class.

�� Doxygen style comments immediately precede class, method, and member
declarations.

�� Doxygen style comments normally reside within the header file before
declarations. When there is no header file, Doxygen comments reside with the
declarations within the implementation file.

�� Implementation files contain standard C++ comments, where the form '//' is
preferred over '/* .. */'. Each important member function should contain a
standard comment block of the form:

 // Purpose and Method: [include the physics if appropriate]
// Inputs

 // Outputs
 // Dependencies:

//
// Restrictions and Caveats: e.g. "This doesn't work off-axis"

�� Do not bother to document obvious members or methods such as default
constructors and get and set routines.

�� Use white space to set off comment blocks, rather than divider lines.
�� Maintain a release.notes text file in the package's doc directory noting major

revisions and tags.

LAT-TD-xxxxx-xx Page 13 of 13

 Hard copies of this document are for REFERENCE ONLY and should not be
 considered the latest revision beyond the date of printing. Form # GF-00001-A

�� When checking in code to the CVS repository, provide modification details within
the log message. The log messages are automatically stored within a ChangeLog
file and will be used as the modification history.

�� If images are inserted into the Doxygen comments, the image files should be
stored within the package's doc/images directory.

�� Keep comments up-to-date when modifying code.

12. REFERENCES

1. SAS Recommendations for Web Documentation
2. SAS Documentation Recommendations for Guides, Tutorials, and

Cookbooks
3. Doxygen, http://www.doxygen.org/
4. GLAST SAS Coding standards, http://www-

glast.slac.stanford.edu/software/CodeHowTo/codeStandards.html/

http://www.doxygen.org/

	CHANGE HISTORY LOG
	1. ABSTRACT
	2. DEFINITIONS
	3. INTRODUCTION
	7. DEVELOPER GUIDE
	11. SUMMARY OF RECOMMENDATIONS
	12. REFERENCES

